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Abstract 

Obesity represents a major global public health challenge. Consequently, metabolic dysfunction–associated 
steatotic liver disease (MASLD) has become the primary driver of chronic liver disease globally and is currently 
the most rapidly accelerating factor contributing to hepatocellular carcinoma (HCC). However, current 
evidence indicates that immunotherapy, a cornerstone of HCC management, yields suboptimal results 
specifically in MASLD-related HCC (MASLD-HCC) cases. Various immune components constitute a special 
immune microenvironment in MASLD-HCC, including heterogeneous myeloid cells, lymphocytes and platelets. 
Furthermore, disruptions in the intestinal barrier, along with the ectopic presence of intestinal flora and 
metabolites, also influence the immune microenvironment in MASLD-HCC. Elucidating immune cells functions 
and their interplay with gut microbiota is critical to deciphering MASLD progression to carcinogenesis and 
immunotherapy resistance. This review synthesizes current insights into the immune microenvironment and 
gut microbiome in MASLD-HCC, identifies factors influencing the efficacy of immunotherapy, and summarizes 
potential therapeutic targets to provide detailed guidance for developing effective immunotherapy strategies 
for MASLD-HCC. 

Keywords: metabolic dysfunction–associated steatotic liver disease, hepatocellular carcinoma, immune microenvironment, gut 
microbiota, immunotherapy 

Introduction 
Metabolic dysfunction-associated steatotic liver 

disease (MASLD), the successor diagnosis to 
non-alcoholic fatty liver disease (NAFLD), currently 
impacts an estimated 25% of people globally. Fueled 
by growing epidemics of obesity and metabolic 
syndrome, this condition has become the primary 
cause of chronic liver disease worldwide [1-3]. 
Although the term NAFLD, first introduced by 
Ludwig et al. in 1980, has been used for nearly half a 
century, it was formally replaced by MASLD in June 
2023. This change, based on a consensus document 
jointly released by international liver societies, 

addresses concerns regarding the term's ambiguous 
exclusionary diagnostic criteria and its stigmatizing 
nature [4]. MASLD encompasses both a relatively 
benign, non-progressive phenotype characterized by 
≥5% hepatic steatosis, and progressive metabolic 
dysfunction-associated steatohepatitis (MASH). 
Steatosis, lobular inflammation, hepatocellular 
ballooning, and fibrosis represent the defining 
histological features of MASH, a condition with 
potential for progression to cirrhosis and 
hepatocellular carcinoma (HCC) [5, 6]. HCC 
comprises the majority of primary liver cancers, 
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stands as the sixth most prevalent cancer diagnosis, 
and is the third most common cause of cancer-related 
death [7]. It is well known that hepatitis B virus (HBV) 
and hepatitis C virus (HCV) infections act as the most 
important drivers of primary liver cancer [8, 9]. The 
role of viral hepatitis in HCC etiology has declined 
ascribed to the greater vaccination coverage and 
antiviral medications, which can suppress viral 
effectivity. Accumulating epidemiological evidence 
reveals that MASLD is the fastest-growing etiological 
driver of HCC incidence globally [10, 11]. The 
underlying mechanisms of MASLD-related HCC 
(MASLD-HCC) include excessive lipid accumulation 
and lipid-induced hepatic insulin resistance (IR), liver 
cell damage caused by dysregulated metabolism, 
unique host genetic variants, gut microbiota and their 
metabolic products, and chronic inflammation- 
induced immune response [12, 13].  

Contemporary HCC management encompasses 
surgical options (resection, transplantation), ablation, 
transarterial approaches, radiotherapy, and systemic 
therapies consisting of tyrosine kinase inhibitors 
(TKIs) and immune checkpoint inhibitors (ICIs) [7, 14, 
15]. Due to the confounding effects of subcutaneous 
adipose tissue and hepatic steatosis on ultrasono-
graphic accuracy, coupled with the recognition that 
not all MASLD patients progressing to HCC traverse 
a cirrhotic pathway, MASLD-HCC is frequently 
diagnosed at advanced stages [16-18]. Mounting 
clinical evidence reveals an etiological stratification in 
HCC responsiveness to immunotherapy. Two 
meta-analyses, respectively including 8 trials with 
3739 patients and 3 trials with 1656 patients, revealed 
significantly greater efficacy of ICIs in viral-related 
HCC compared to nonviral HCC. In contrast, the 
efficacy of TKIs showed no etiological dependence 
[19, 20]. Crucially, MASLD-HCC exhibits profound 
immunotherapy resistance, evidenced by two 
independent cohorts reporting significantly reduced 
median overall survival compared to other etiologies. 
This consistent survival disadvantage delineates a 
distinct resistance phenotype inherent to metabolic 
dysfunction-driven hepatocarcinogenesis [19]. 

The efficacy of ICIs, including anti-programmed 
death receptor-1 (PD-1), anti-programmed death- 
ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte 
antigen 4 (CTLA4) mAbs, is largely determined by the 
composition and state of the tumor immune 
microenvironment. MASLD-HCC exhibits a unique 
immunometabolic microenvironment. Lipid-laden 
macrophages promote hepatocyte lipid accumulation, 
while deficiencies in nuclear receptor coactivator 5 
(NCOA5) or neuregulin 4 (NRG4) drive macrophages 
polarization towards a tumor-associated 
macrophages (TAMs)-like phenotype, accelerating 

MASLD-driven hepatocarcinogenesis [21-23]. 
Accumulated polyunsaturated fatty acids (PUFAs) 
foster neutrophil extracellular traps (NETs) 
generation that shifts naïve CD4+ T cells 
differentiation toward regulatory T cells (Tregs) [24]. 
Concurrently, CD8+ T cells display functional 
impairment, increased exhaustion, and reduced 
motility [19, 25]. The lipid-enriched milieu also 
depletes CD4+ T cells and induces linoleic 
acid-mediated oxidative damage, further promoting 
tumorigenesis [26]. Immunosuppressive IgA+ B cells 
accumulate in MASLD-HCC, impairing antitumor 
immunity by inhibiting cytotoxic CD8+ T cells [27]. 
Diverse immune cells coordinate an immuno-
suppressive milieu conducive to tumorigenesis, 
significantly exacerbating MASLD-HCC transition 
dynamics, though their precise individual roles 
warrant further elucidation. Pathogenic alterations in 
these bidirectional signaling pathways trigger a 
sequence of pathological events that culminate in 
metabolic diseases, with MASLD being a prominent 
example [28]. Gut dysbiosis contributes to MASLD 
pathogenesis by compromising intestinal barrier 
integrity, thereby facilitating the translocation of 
microbiota-derived factors and microbial-associated 
molecular patterns (MAMPs) to the liver. Engagement 
of hepatic pattern recognition receptors (PRRs), 
notably Toll-like receptors (TLRs), by these molecules 
initiate potent pro-inflammatory pathways, driving 
increased hepatic inflammation and fibrogenesis [12]. 
This review also delineates how gut 
microbiota-derived signals modulate the hepatic 
immune landscape, offering novel perspectives on 
immunological perturbations in MASLD progression. 

Elucidating the changes in the immune system 
during MASLD-HCC progression can provide crucial 
insights into the potential mechanisms behind the 
reduced effectiveness of immunotherapy in 
MASLD-HCC patients. In this review, we discuss the 
innate and adaptive immune responses, alongside gut 
microbiota and metabolite-mediated immunological 
shifts in MASLD-HCC pathogenesis. Accumulating a 
deeper understanding of these immune mechanisms 
may provide new insights into MASLD-HCC 
development and help improve the efficacy of 
prevention and immunotherapy strategies for 
MASLD-HCC. 

Myeloid Cell and Regulation of the 
MASLD-HCC Immune 
Microenvironment 
Macrophages 

Macrophages, present as abundant resident cells 
throughout the body's organs, are integral to tissue 
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development and homeostasis while potentially 
playing a role in diverse ailments pathogenesis [29, 
30], including MASLD (Figure 1). Macrophages can be 
categorized by origin into embryo-derived Kupffer 
cells (EmKC) and bone marrow/monocyte-derived 
macrophages [30, 31]. EmKCs form the predominant 
resident macrophage subset. Their functional 
repertoire, encompassing the secretion of anti- 
inflammatory mediators and proficient phagocytosis 
of particulates arriving through the portal circulation, 
is essential for sustaining liver immune equilibrium 
[32, 33]. Bone marrow/monocyte-derived macro-
phages, however, infiltrate liver tissue during liver 
injury or inflammation, exhibiting proinflammatory 
features [34, 35]. Macrophages can also be divided 
into inflammatory, lipid- and scar-associated, and 
restorative macrophages based on their different 
functions [30, 36, 37].  

The occurrence and progression of MASLD are 
inseparable from significant macrophages 
involvement [32, 38]. During hepatic steatosis onset, 

the deposition of excess fatty acids places the liver in a 
state of stress, cholesterol, chemokine C-C motif 
chemokine ligand 2 (CCL2) and C-X-C motif 
chemokine ligand 10 (CXCL10) secreted by steatotic 
hepatocytes activate macrophages [39, 40]. Activated 
Kupffer cells can inhibit hepatocyte lipid metabolism 
through paracrine release of interleukin 1 beta (IL-1β) 
and tumor necrosis factor (TNF) α, ultimately 
encouraging hepatocyte steatosis [41]. In the 
pro-inflammatory hepatic milieu, EmKCs exhibit 
compromised self-renewal potential [42, 43]. The 
recruitment of C-C motif chemokine receptor 2 
(CCR2) + monocyte-derived macrophages into the 
liver suppresses intrahepatic hepatic triglyceride (TG) 
retention and drives disease evolution toward 
steatohepatitis [43]. This process is further amplified 
by paracrine signaling between macrophages and 
hepatic stellate cells (HSCs), wherein transforming 
growth factor beta (TGF-β) acts as a key effector to 
stimulate pro-fibrotic HSC activation, thereby 
facilitating MASH development [44, 45].  

 

 
Figure 1: Innate immune modulation and platelets in MASLD-HCC pathogenesis. CCL2 secreted by steatotic hepatocytes recruits monocyte-derived macrophages, 
which then differentiate into anti-inflammatory TREM2+ macrophages and proinflammatory CX3CR1+CCR2+ macrophages. CX3CR1+CCR2+ macrophages participate in the 
formation of hepatic crown-like structures. EmKCs are also activated, which secrete IL-1β and TNF-α to induce TERM2 shedding in TREM2+ macrophages and aggravate 
hepatocyte steatosis. Neutrophils produce MPO, NE, and ROS, increasing oxidative stress and hepatocyte damage. NETs form and recruit naïve CD4+ T cells, driving 
TLR4-dependent Tregs differentiation. Platelets are increased and activated during the progression. pEVs containing impaired mitochondria are transferred to hepatocytes, 
causing excess LD buildup, heightened mitochondrial ROS, and apoptosis. The α and δ granules secreted by platelets release particles laden with pro-aggregatory molecules, 
inflammatory cytokines, chemokines, and growth factors, potentiating inflammatory responses. Platelets recruit CD8+ T cells and NKT cells by hyaluronan-CD44 binding with 
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Kupffer cells in a platelet membrane GPIbα-dependent manner. HSCs are activated by TGF-β from macrophages, MPO from neutrophils, and PDGF-β or PDGF-AA from 
platelets, finally causing fibrogenesis. Abbreviations: CCL, C-C motif chemokine ligand; CX3CR1, C-X3-C motif chemokine receptor 1; EmKC, Embryonic Kupffer cell; GPIbα, 
glycoprotein Ibα; HCC, hepatocellular carcinoma; HSCs, hepatic stellate cells; IL-1β, interleukin 1 beta; pEVs, platelet-derived extracellular vesicles; PDGF, platelet-derived 
growth factor; LD, lipid droplet; MPO, myeloperoxidase; MASH, metabolic dysfunction associated steatohepatitis; MASLD-HCC, metabolic dysfunction associated steatotic liver 
disease-related hepatocellular carcinoma; NE, neutrophil elastase; ROS, reactive oxygen species; NETs, neutrophil extracellular traps; NKT, natural killer T cells; TGF-β, 
transforming growth factor beta; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor alpha; Tregs, regulatory T cells; TREM2, triggering receptor expressed on myeloid cells 
2. 

 
In MASH progression, lipid-associated 

macrophages, a monocyte-derived subset, comprise 
two phenotypes: transitional CX3CR1+CCR2+ 
macrophages and classic triggering receptor 
expressed on myeloid cells 2 (TREM2) + macrophages 
[46]. TREM2+ macrophages exhibit anti-inflammatory 
effects by modulating lipid uptake, thereby mitigating 
MASH progression, while CX3CR1+CCR2+ 
macrophages contribute to hepatic crown-like 
structures formed by macrophages encircling 
lipid-laden hepatocytes [46]. Hepatic crown-like 
structures serve as histological markers of advanced 
disease, with their density closely tracking the 
severity of liver fibrosis [47]. In MASH, IL-1β and 
TNF-α induce TREM2 shedding via a disintegrin and 
metalloproteinase 17 (ADAM17)-mediated proteolytic 
cleavage, leading to abnormal accumulation of dying 
hepatocytes, which exacerbates proinflammatory 
cytokine production and drives disease progression 
[48]. Hypoxia-inducible factor (HIF) has emerged as a 
pivotal regulator of immune function and 
inflammatory pathways [49]. Within macrophages in 
MASH mouse models, elevated HIF-1α levels impair 
autophagic flux while promoting IL-1β secretion. 
Concurrently, HIF-1α-driven NF-κB activation 
upregulates monocyte chemoattractant protein-1 
(MCP-1), with both cytokines exacerbating hepatic 
steatosis and inflammatory responses [50]. HIF-2α 
exerts cell type-specific effects in liver macrophages: it 
compromises EmKC homeostasis by aggravating 
lysosomal stress, resulting in diminished proliferation 
and phagocytosis. In contrast, bone marrow/ 
monocyte-derived macrophages undergo HIF-2α- 
driven pro-inflammatory polarization via 
mitochondrial ROS amplification and coordinated 
upregulation of inflammasome-related genes [51]. 

The role played by macrophages in MASLD- 
HCC is incompletely understood. Some studies have 
discovered that myeloid differentiation primary 
response 88 (MyD88) in myoblasts enhances MASLD- 
HCC development by promoting M2 macrophage 
polarization [52]. NCOA5 deficiency in macrophages 
was also identified as a key factor in the transition [22, 
53]. Previous studies identified NRG4 as a regulatory 
checkpoint suppressing tumor-permissive liver 
microenvironments. Loss of NRG4 promotes 
macrophages with TAM-like properties and drives 
cytotoxic CD8+ T cells exhaustion in MASLD-HCC 
[21]. A study demonstrated a significant upregulation 

of the YT521-B homology (YTH) m6A RNA-binding 
protein 1 (YTHDF1) in MASLD-HCC compared to 
peri-tumor regions. Upregulated YTHDF1 promotes 
MASLD-associated carcinogenesis through EZH2-IL6 
pathway stimulation. This signaling cascade recruits 
and activates myeloid-derived suppressor cells 
(MDSCs), ultimately suppressing CD8+ T cells 
cytotoxicity [54]. Besides, former studies indicated 
that tumor-activated monocytes exhibit robust PD-L1 
surface expression, which potently suppresses T cells 
function and accelerates HCC progression [55, 56].  

During MASLD progression to HCC, distinct 
macrophage subsets drive lipid accumulation and 
inflammation through cytokine secretion. Critically, 
macrophage dysfunction—manifested by MyD88- 
dependent M2 polarization, NCOA5 deficiency, 
NRG4 loss, and YTHDF1-EZH2-IL6-mediated MDSCs 
recruitment—establishes a profoundly immuno-
suppressive microenvironment. This axis may play a 
pivotal role in both MASLD-HCC development and 
resistance to immunotherapy. 

Neutrophils  
Circulating neutrophils, being the most 

numerous white blood cells, execute frontline 
protective functions within the innate immune 
framework [57]. However, abnormally activated 
neutrophils are associated with certain inflammation- 
related diseases [58, 59]. Studies have shown that 
neutrophils infiltration is frequently noted in MASLD 
patients and correlates with disease progression [60, 
61]. Neutrophils drive MASLD-HCC pathogenesis 
through ROS generation, protease secretion, and 
NETs formation [62, 63] (Figure 1). 

In MASLD liver, upregulated CXCL1 expression 
recruits neutrophils, leading to ROS production, 
which promotes the transition from steatosis to 
steatohepatitis by inducing oxidative stress and 
activating related signaling pathways [64, 65]. IL-8 
also contributes to the recruitment of neutrophils to 
the liver and promotes MASH by overexpressing 
CXCL1 and inducing mitochondrial oxidative stress 
[66]. IL-22, on the other hand, can upregulate hepatic 
antioxidant enzymes, metallothionein (MT) 1 and 
MT2, to impede neutrophils recruitment, thereby 
alleviating MASH development [67].  

The proteolytic enzymes released by 
neutrophils—notably myeloperoxidase (MPO), 
neutrophil elastase (NE), and human neutrophil 
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peptides (HNPs) may substantially contribute to 
MASLD development. MASH is characterized by 
increased MPO levels compared with simple steatosis 
[67]. In the MASLD mouse model, MPO catalyzes 
HOCl formation from H₂O₂, which damages 
hepatocytes and upregulates TGF-β, activating HSCs 
to drive fibrosis [68]. NE has multiple roles, including 
pro-inflammatory and pro-cancer effects [69, 70]. It 
has been demonstrated that NE promotes 
inflammation and insulin resistance by modulating 
the AMPK pathway and fatty acid oxidation [71, 72]. 
HNPs also promote the transition of MASH to fibrosis 
by stimulating HSCs proliferation [73].  

NETs represent extracellular chromatin 
networks where unpacked DNA scaffolds embed 
neutrophil-derived granular enzymes and cytosolic 
proteins [74, 75]. Studies have indicated that the 
accumulation of PUFAs drives NETs formation in 
MASH progression [76]. In MASLD-HCC, NETs 
regulate the mitochondrial oxidative phosphorylation 
(OXPHOS) of naïve CD4+ T cells, driving their 
differentiation into Tregs in a TLR4-dependent 
manner. This process establishes an 
immunosuppressive microenvironment, promoting 
HCC development in MASH [24, 60]. 

Intercellular crosstalk critically modulates 
MASH progression. Within the MASLD-HCC tumor 
microenvironment (TME), CXCR2-expressing 
neutrophils demonstrate significant spatial 
enrichment, secreting diverse protumor mediators 
[77]. This phenotypic profile confers upon them the 
capacity to orchestrate a cascade of 
immunomodulatory events, including MDSC 
activation, the inhibition of dendritic cells maturation 
and function, and the promotion of tumor progression 
[77]. Lipocalin (LCN)-2 secreted by neutrophils also 
upregulates CXCR2 to facilitate the recruitment and 
proliferation of pro-inflammatory macrophages via 
NF-κB signaling [78]. Besides, NETs may also attract 
monocyte-derived macrophages to infiltrate the liver 
by releasing certain signaling molecules or altering 
the local microenvironment [60]. Additionally, 
microRNA-223 can be taken up by hepatocytes 
through the binding of low-density lipoprotein 
receptor (LDLR) and apolipoprotein E (APOE), 
thereby inhibiting MASH progression [79].  

Taken together, neutrophils drive MASLD 
progression, fibrogenesis, and HCC pathogenesis by 
recruiting CXCR2+ neutrophils, producing ROS, 
proteases, LCN-2, and microRNA-223, and forming 
NETs.  

Dendritic cells 
Positioned at the innate-adaptive interface, 

dendritic cells (DCs) coordinate initial defense 

reactions while instigating antigen-driven 
lymphocyte activation [80, 81]. DCs differentiate into 
three principal subsets based on ontogeny: 
conventional DCs (cDCs), plasmacytoid DCs (pDCs), 
and Langerhans cells (LCs) [80, 82]. cDCs comprise 
two principal subtypes: conventional type I dendritic 
cells (cDC1) and conventional type II dendritic cells 
(cDC2) [83].  

Previous studies have reported a decline in 
CD8+ pDCs and CD11c+CD8+ α-DCs during 
MASLD, concomitant with an increase in 
CD11b+CD8- pDCs [84]. CD103+ cDC1s and CD11b+ 
cDC2s also accumulate in the MASLD process [85, 86]. 
CD130+ DCs were discovered to serve as 
hepatoprotective agents in MASLD by regulating the 
immune response, limiting inflammatory cell 
activation, and potentially removing cell debris, 
thereby mitigating steatosis in MASLD [85, 87]. In 
contrast, chemokine X-C receptor 1 (XCR1) + cDC1s 
accumulate in MASH-affected livers across species, 
with their density positively correlating with 
histological severity [88, 89]. Mechanistically, liver 
pathology results from an excess of cDC1s, generated 
by enhanced proliferation of their bone marrow 
precursors. These amplified cDC1 populations drive 
inflammation by activating and reprogramming 
pro-inflammatory T cells [88]. However, some studies 
have yielded different conclusions. Batf3-deficient 
mice, which lack cDC1s, exhibit significant inhibition 
of the transition from steatosis to steatohepatitis [90]. 
The observed discrepancies may stem from the fact 
that the deletion of Batf3 may also impacts other 
immune cells. Furthermore, preclinical investigations 
indicated that co-blockade of PD-1 and CXCR2 
significantly augments the XCR1+ cDC1s population, 
which promotes CD8+ T cells recruitment, thereby 
enhancing the therapeutic efficacy of the combination 
regimen [77].  

DCs exhibit dichotomous roles in MASLD-HCC. 
Protective subsets like CD130+ DCs mitigate steatosis 
by regulating inflammation and clearing debris. 
Conversely, pathogenic XCR1+ cDC1s orchestrate 
pathology by activating pro-inflammatory T cells. 
Therapeutically, augmenting specific DC subsets (e.g., 
XCR1+ cDCs via anti-PD-1/CXCR2 inhibition) 
represents a therapeutic strategy to amplify CD8+ T 
cells infiltration and potentiate treatment efficacy. 

Lymphocyte-Mediated Immune 
Response in MASLD-HCC 
CD8+ T cells 

The pathogen-clearing function of CD8+ T cells
— mediating long-lasting protective immunity and 
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homeostatic balance — demonstrates a significant 
association with improved patient survival metrics in 
HCC patients [91-93]. Depleting CD8+ T cells or 
administering anti-CD8α treatment promotes 
MASLD-HCC development [27, 77]. ICIs-based 
immunotherapy is also implemented based on their 
characteristics. However, some studies have revealed 
that CD8+ T cells in MASLD-HCC fail to exert 
anti-tumor effects and may even promote 
MASLD-HCC progression [19, 94]. Many studies have 
dedicated efforts to elucidating this intriguing but 
paradoxical phenomenon.  

Quantitatively, despite an elevated systemic 
frequency, CD8+ T cells often exhibit impaired tumor 
infiltration, compromising their anti-tumor efficacy. 
During MASH progression, CD8+ T cells migrate to 
the liver via antigen presentation or cytokine 
signaling, increasing their overall population [95-98]. 
However, hepatic CD8+ T cells infiltration is 
primarily hindered by excessive collagen fiber 
deposition at the tumor margin [99]. Recent advances 
in spatial transcriptomics have also revealed that 
immune cells are predominantly enriched in adjacent 
normal tissues but markedly diminished within 
tumor regions [100]. This spatially marginal 
distribution pattern and diminished infiltration 
capacity of CD8+ T cells constrain their antitumor 
efficacy, resulting in immunotherapy being 
predominantly effective at tumor margins rather than 
within the tumor core, ultimately contributing to 
MASLD-HCC development and immunotherapy 
inefficiency. 

Functionally, CD8+ T cells shift from naïve or 
effector states to dysfunctional or exhausted states, 
characterized by expanding intrahepatic CD8+PD-1+ 
T cells expressing genes linked to exhaustion, tissue 
residency, and impaired effector functions [19, 94, 96]. 
Compared to healthy individuals, MASLD-HCC 
patients exhibit higher rates of catenin beta 1 
(CTNNB1) mutations, which elevate tumor necrosis 
factor receptor superfamily 19 (TNFRSF19) levels and 
suppress the secretion of senescence-associated 
secretory phenotype (SASP)-like cytokines, such as 
IL-6 and CXCL8, fostering an immune-excluded ‘cold’ 
TME that exacerbates CD8+ T cells dysfunction [101, 
102]. Besides, overexpressed YTHDF1 has been 
implicated in suppressing cytotoxic CD8+ T cells 
function by enhancing IL-6 secretion [54]. Cholesterol 
accumulation dysregulates CD8+ T cells cytotoxicity 
through suppressed granzyme B (GZMB) and 
interferon gamma (IFN-γ) secretion [103]. 
Intratumoral CD8+ T cells in MASH-bearing mice 
additionally exhibit impaired motility—evidenced by 
reduced migration velocities and shortened 

displacement lengths — collectively diminishing 
antitumor capacity [25, 94]. Altered hepatic lipid 
metabolism likely drives CD8+ T cells metabolic 
reprogramming in MASH pathogenesis. Supporting 
in vitro data reveal that MASH impairs tumor- 
infiltrating CD8+ T cells motility independently of 
chemokine signaling or adhesion molecule 
interactions. Metabolic profiling of CD8+ T cells 
derived from NASH mice reveals dysregulated 
glycolysis, fatty acid oxidation, and mitochondrial 
respiration, substantiating their functional 
impairment. This metabolic impairment is further 
evidenced by marked mitochondrial depolarization 
and diminished mitochondrial mass [25, 94, 96]. 
Therefore, despite the increase in CD8+ T cells, their 
functionality is predominantly impaired, rendering 
them unable to exert anti-tumor effects, contributing 
to MASLD-HCC development and immunotherapy 
inefficiency. 

A unique CXCR6+CD8+ T cells subset that exerts 
distinct roles compared with other CD8+ T cells 
subsets has been identified. CXCR6+CD8+ T cells 
maintenance depends on CCR7+ DCs that express the 
cognate ligand CXCL16 and provide IL-15 cytokine 
signaling [104]. These T cells, characterized by low 
Forkhead Box O1 (FOXO1) activity, are detected to 
accumulate in MASH mice fed a choline-deficient, 
high-fat diet (CD-HFD) or a western diet (WD). 
Mechanistically, IL-15-mediated FOXO1 suppression 
coupled with CXCR6 induction metabolically 
sensitizes CXCR6+CD8+ T cells. This reprogramming 
enables aberrant recognition of acetate/ATP signals, 
provoking auto-aggressive cytolysis through factor 
associated with suicide (Fas) / Fas ligand (FasL) 
interaction [105]. Strikingly, CXCR6+CD8+ T cells 
exhibit heightened migratory velocity when activated 
by local tissue signals [94] (Figure 2). 

Therefore, immunotherapy resistance in MASLD 
may arise from: reduced tumor CD8+ T cells 
infiltration, functionally exhausted T cells with 
impaired motility, and pathological accumulation of 
CXCR6+ or PD-1+ CD8+ T cells subset in the liver. 
Cell metabolism is widely recognized as a factor 
affecting T cells function and migration. Given that 
MASLD is characterized by metabolic dysregulation, 
alterations in the MASLD-HCC TME may induce 
metabolic disturbances in CD8+ T cells, potentially 
exacerbating hepatic damage and promoting 
MASLD-HCC. 

CD4+ T cells 
As master regulators of adaptive immunity, 

CD4+ T cells represent a fundamental lymphocyte 
subpopulation. These cells segregate into two 
functional lineages: helper T cells (Th) and Tregs [106, 
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107]. Th cells undergo further specialization into 
distinct subsets (Th1, Th2, Th17, Th22) defined by 
unique transcriptional programs and cytokine 
signatures [107, 108]. CD4+ T cells subsets exert their 
respective effects, promoting or inhibiting disease 
progression, thus forming an immune regulatory 
network. Progression of MASH is accelerated through 
IFN-γ/TNF-α secretion from Th1 cells, mediating 
hepatocyte cytotoxicity and inflammation 
potentiation [109, 110]. Th2 cells, by secreting IL-13, 
promote HSC activation, leading to liver fibrosis 
[111]. Th17 cells accelerate MASH progression by 
secreting IL-17, which promotes hepatocellular injury 
and inflammatory responses [112, 113]. IL-17 also 
promotes hepatic fibrosis by up-regulating TGF-βRII 
on HSCs surfaces, which enhances their response to 
TGF-β [114]. In contrast, Th22 cells have a protective 
effect by secreting IL-22, attenuating hepatocytes 
injury and inflammatory response [115, 116].  

In methionine-choline-deficient (MCD) or 
choline-deficient and amino acid-defined (CDAA) 
diet-induced MASH models, intrahepatic CD4+ T 
cells depletion occurs as lipid-rich microenvironments 
upregulate CPT expression. This amplifies 
mitochondrial biogenesis and reactive oxygen species 
generation, enhancing susceptibility to cytotoxic lipid 
metabolites like linoleic acid [26, 117]. Reports 
indicate a decrease in total hepatic CD4+ T cells, yet 
some subpopulations increase in MASH. Expanded 
central and effector memory CD4+ T cells drive liver 
inflammation and fibrosis [118]. Th17 cells are also 
demonstrated to be increased [119, 120]. A significant 
study uncovered the presence of a unique pathogenic 
subpopulation of liver Th17 cells, inflammatory 
hepatic CXCR3+ Th17 (ihTh17), which is sufficient to 
contribute to MASLD development through 
activating the CXCR3-CXCL9/10 axis and 
reprogramming cells toward a metabolic and 
proinflammatory phenotype [121]. Besides, enhanced 
hepatic and intestinal mucosal addressin cell adhesion 
molecule-1 (MAdCAM-1) expression in WD-fed mice 
facilitated α4β7+ CD4+ T cells recruitment, directly 
aggravating inflammatory responses and extracellular 
matrix deposition in the liver [122]. 

Tregs, a highly immunosuppressive subset of 
CD4+ T cells characterized by CD4+FOXP3+CD25+ 
expression, are essential for maintaining an 
immunosuppressive microenvironment [123]. 
Emerging evidence reveals a biphasic role of Tregs in 
MASLD pathogenesis [124]. During early steatosis, 
obesity and insulin resistance suppress Tregs 
differentiation and impair their functional capacity 
[125, 126]. Concurrently, oxidative stress triggers 
Tregs apoptosis and activates the TNF-α signaling 
pathway, collectively driving progressive hepatic 

injury [127]. As disease advances to MASH, 
substantial Tregs expansion occurs despite this initial 
suppression. NETs reprogram mitochondrial 
OXPHOS in naïve CD4+ T cells via TLR4 signaling, 
promoting their differentiation toward a regulatory 
phenotype over an effector phenotype [24]. During 
chronic liver injury, these elevated Tregs produce 
amphiregulin, which engages epidermal growth 
factor receptor (EGFR) on HSCs. This interaction 
directly promotes hepatic fibrogenesis and 
concurrently stimulates HSCs to secrete IL-6. The 
resulting IL-6 contributes to glucose intolerance, 
thereby establishing a vicious cycle that further drives 
MASH progression [128]. Gut dysbiosis represents a 
well-recognized pathological feature of MASLD. 
Microbial-derived short-chain fatty acids (SCFAs) 
amplify Tregs responses by enhancing IL-10-secreting 
Tregs abundance and expanding specialized effector 
Tregs populations [129]. As a microbial membrane 
constituent, lipoteichoic acid (LTA) translocates from 
gut to liver parenchyma, directly driving senescence 
programming in HSCs with consequent SASP factor 
secretion. Critically, bioactivation of IL-33 occurs 
through chymotrypsin-like elastase family member 1 
(CELA1)-mediated proteolytic cleavage of its 
full-length precursor. Senescent HSCs export this 
mature IL-33 via gasdermin D (GSDMD) amino- 
terminal domain-mediated pore formation. The 
liberated cytokine then engages ST2+ Tregs (where 
ST2 functions as the IL-33 receptor), driving 
obesity-promoted hepatocarcinogenesis [130]. 

Herein, the metabolic reprogramming in CD4+ T 
cells is evident in MASLD-HCC pathogenesis. These 
cells exhibit increased mitochondrial mass and 
elevated mitochondrial OXPHOS activity. Heightened 
mitochondrially derived ROS instigates oxidative 
stress-mediated depletion of intrahepatic CD4+ T 
cells, accelerating hepatocarcinogenesis. Besides, 
enhanced OXPHOS activity directs naïve CD4+ T cells 
commitment to the Treg lineage, sustaining an 
immunosuppressive microenvironment (Figure 2). 

B cells 
B lymphocytes contribute significantly to 

MASLD-HCC pathogenesis due to their ability to 
secrete antibodies and various pro- and 
anti-inflammatory cytokines [131, 132] (Figure 3). B 
cells heterogeneity is principally defined by surface 
marker expression, distinguishing B1 and B2 
lymphocyte subsets [133, 134]. B1 cells are generated 
from the fetal liver and produce IgM natural 
antibodies, participating in the innate immune 
response. Bone marrow-derived B2 precursors 
differentiate into antibody-secreting plasma cells via 
Th cell-mediated pathways, producing high-affinity 
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antigen-specific immunoglobulins [131, 135]. An 
additional population of B cells characterized by 
CD5+CD1d high, known as regulatory B cells (Bregs), 
produce inhibitory cytokines, such as IL-10, or secrete 
inhibitory antibodies to affect the function of other 
immune cells, thus creating an immunosuppressive 
microenvironment [136, 137].  

Activation of B cells in MASLD-HCC 

Hepatic B cells accumulation occurs alongside an 
activated, pro-inflammatory phenotype linked to 
disease severity in MASLD [138-140]. MyD88 triggers 
B cell activation, and its B cell-specific deletion 
ameliorates inflammation and fibrosis [141]. The B cell 
activation cascade initiates before T cells engagement 
and features B cell-activating factor (BAFF) 
overexpression. This cytokine critically sustains B 
cells survival and developmental progression [138]. 
Using BAFF-neutralizing monoclonal antibodies or 
BAFF−/− mice can dramatically ameliorate 
steatohepatitis and reduce liver weight [138, 142]. 
Another potential factor is that gut-derived antigens 
and bacterial metabolites may drive intrahepatic B 
cells toward an inflammatory phenotype via 
MyD88-dependent or BCR signaling pathways. Fecal 
microbiota transplantation from MASLD patients 
augments intrahepatic B cells accumulation and 

hastens disease progression in recipient mice [141]. 
The roles of B cells are discussed from three critical 
perspectives: antigen presentation, pro-inflammatory 
cytokine secretion, and the generation of pathogenic 
antibodies in the progression of MASLD. 

Antigen presentation 

In MASLD, B cells display increased expression 
of cell surface major histocompatibility complex 
(MHC)-I and MHC-II, as well as CD86, suggesting 
enhanced antigen-presenting capability [138, 141]. 
Sometimes intestinal B cells induce T cells 
hyperactivation that does not rely on their traditional 
antigen presentation ability but on direct cell-cell 
interaction via intercellular cell adhesion molecule 
(ICAM)-1 and leukocyte function-associated antigen 
(LFA)-1 [143]. Hepatic B cell-derived cytokines 
orchestrate pro-inflammatory responses while 
modulating adjacent T cells activity. Specifically, 
intrahepatic B cell-secreted IL-6 and TNF-α activate 
CD4+ T cells and drive their Th1 polarization in 
MASH pathogenesis [141, 144]. B cells also have a 
prominent role in activating HSCs and promoting 
fibrosis via TNF signaling [145]. Bregs have been 
shown to promote HCC development, but a subset of 
Bregs expressing IL-10 has a protective effect against 
MASH progression [146, 147].  

 

 
Figure 2: Characteristic changes of T cells in MASLD-HCC pathogenesis. In CD8+ T cells, IL-15 populated the CXCR6+PD-1+CD8+ T cells and CD8+ Trm cells, 
which cause HSCs apoptosis through Fas/FasL interaction respectively. Some CD8+ T cells also exhibit lower velocities and shorter displacement lengths, thus reducing their 
motility and antitumor effect. In CD4+ T cells, high levels of ROS make CD4+ T cells much more vulnerable to exposure to lipid metabolites, finally causing CD4+ T cells 
apoptosis. α4β7+ CD4 T cells are recruited by increased MAdCAM-1 in the liver and colon, which exacerbates inflammation and fibrosis. CXCR3+Th17 (ihTh17) is also 
increased to contribute to the development of MASH through activating the CXCR3-CXCL9/10 axis and reprogramming the metabolic and proinflammatory phenotype. The 
formation of NETs regulates the mitochondrial OXPHOS of naïve CD4+ T cells and drives their differentiation into Tregs in a TLR4-dependent manner. Abbreviations: CXCR, 
C-X-C motif chemokine receptor; CXC, C-X-C motif chemokine ligand; Fas, factor associated with suicide; FasL, Fas ligand; HCC, hepatocellular carcinoma; HSCs, hepatic 
stellate cells; IL-15, interleukin 15; MAdCAM-1, mucosal addressin cell adhesion molecule-1; MASH, metabolic dysfunction associated steatohepatitis; MASLD-HCC, metabolic 
dysfunction associated steatotic liver disease-related hepatocellular carcinoma; OXPHOS, oxidative phosphorylation; NETs, neutrophil extracellular traps; PD-1, programmed 
death receptor 1; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; Tregs, regulatory T cells; Trm, tissue-resident memory T cells. 
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Figure 3: Dynamic changes of B cells in MASLD-HCC pathogenesis. B cells were activated by antigens derived from the gut and bacterial metabolites draining into the 
liver through MyD88-dependent or BCR signaling. The activated B cells are associated with increased inflammation and fibrosis, as well as BAFF, which forces B cell survival and 
maturation. IL-6 and TNF-α derived from intrahepatic B cells activate CD8+ T cells and CD4+ T cells, facilitating their secretion of IFN-γ. B cells also activate HSCs and promote 
fibrosis dependent on TNF signaling. IgA+ B cells are accumulated in the liver, which suppress CD8+ T cells by upregulating the expression of PD-L1 on the cell surface and 
producing the immunosuppressive cytokines. In the gut, IgA activates monocyte-derived macrophages in FcR-signalling. NcDase is significantly increased in the intestinal brush 
border of the small intestine and induces IgA-bound Desulfovibrio, which contributes to up-regulating SCD 1 expression with an increase of MUFAs, further facilitating the 
development of liver fibrosis. IgG antibodies are also elevated to be against OSEs. This anti-OSE IgG is connected to the differentiation of liver B2 cells to plasma cells. On the 
contrary, anti-OSE IgM is decreased in the process, suggesting a protective role. Abbreviations: BAFF, B cell-activating factor; HCC, hepatocellular carcinoma; HSCs, hepatic 
stellate cells; IgA, immunoglobulin-A; IgG, Immunoglobulin-G; IgM, immunoglobulin-M; IFN-γ, interferon gamma; IL-6, interleukin 6; PD-L1, programmed death ligand 1; MyD88, 
myeloid differentiation primary response 88; MUFAs, monounsaturated fatty acids; NcDase, Neutral ceramidase; MASH, metabolic dysfunction associated steatohepatitis; 
MASLD-HCC, metabolic dysfunction associated steatotic liver disease-related hepatocellular carcinoma; OSEs, oxidative-stress–derived epitopes; SCD, stearoyl-CoA 
desaturase; TNF-α, tumor necrosis factor alpha. 

 

Secretion of pro-inflammatory cytokines  

Evidence indicates that B cell-derived antibodies 
are involved in MASLD-HCC pathogenesis. In 
MASLD patients, elevated serum IgA levels are 
observed, which activate monocyte-derived 
macrophages via FcR signaling to promote hepatic 
fibrosis [143, 148]. The IL-21R-STAT1-c-Jun/c-Fos-IgA 
regulatory pathway is activated during 
MASLD-HCC, which leads to immunosuppressive 
IgA+ cells induction [149]. These cells can suppress 
CD8+ T cells by upregulating PD-L1 surface 
expression and producing the immunosuppressive 
cytokine IL-10, impacting tumor immune surveillance 
function in MASLD-HCC [27]. MASH models 
demonstrate elevated neutral ceramidase (NcDase) 
expression in the small intestinal brush border. 
NcDase acts as a regulator of gut B cells that induce 

IgA-bound Desulfovibrio and might contribute to 
up-regulating stearoyl-CoA desaturase (SCD) 1 
expression and an increase in monounsaturated fatty 
acids (MUFAs). The increased SCD1/MUFAs activate 
Wnt/β-catenin signaling, further facilitating liver 
fibrosis [150].  

Generation of pathogenic antibodies 

Increased serum IgG2c levels point to a key role 
for secreted antibodies in MASH pathogenesis. 
Elevated IgG antibodies against oxidative-stress–
derived epitopes (OSEs) have been demonstrated to 
drive lobular inflammation severity, fibrosis, and 
increased risk of MASH [138, 151]. Plasma cells 
differentiation from hepatic B2 precursors coincides 
with rising anti-OSE IgG titers [138, 152]. Conversely, 
there is a significant decline in IgM+B220+ hepatic B 
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cells in MCD mice, paralleled by diminished anti-OSE 
IgM titers in MASLD patients compared to healthy 
controls [153]. Immunizing low-density lipoprotein 
receptor knock-out mice (Ldlr-/-) mice with 
heat-inactivated pneumococci to induce anti-OxLDL 
(oxidized low-density lipoproteins) IgM reduces liver 
inflammation under a high-fat, high-cholesterol diet, 
highlighting IgM's protective role [154]. The potential 
opposing effects of anti-OSE IgG and IgM 
demonstrate that the B1 and B2 cells may exert 
different roles in MASH, creating opportunities for 
novel therapies targeting specific B cells subsets or 
antibodies. 

In summary, the inflammatory phenotype, 
pro-inflammatory cytokines, and pathogenic 
antibodies all play important roles in MASLD 
development. In other cancer types, substantial 
evidence supports a correlation between 
immunotherapy efficacy and B cells infiltration and 
tertiary lymphoid structure (TLS) formation, which 
enhance B cell-mediated antitumor immunity 
[155-157]. However, TLS formation may be rare in 
MASLD-HCC, and this lack might alter B cells 
function and subsequently impede immunotherapy 
response. Moreover, given that the generation of 
antibodies by B cells correlates with response to ICIs 
in mouse models of triple-negative breast cancer and 
the abnormal accumulation of antibodies in MASH, 
these antibodies likely also influence immune 
responses in MASLD-HCC [158].  

Platelets in MASLD-HCC 
While platelets are essential for hemostasis and 

wound repair, their extended functions now include 
significant contributions to hepatic inflammation and 
liver disease pathogenesis [159-161]. Hepatic 
physiology centrally governs platelet biogenesis and 
elimination. Reciprocally, platelets modulate liver 
functions through α-granule and dense granule 
exocytosis, releasing bioactive growth factors and 
immunoregulatory molecules [162]. Typically, 
patients with MASLD commonly display elevated 
platelet counts along with increases in mean platelet 
volume (MPV) and platelet distribution width (PDW) 
compared to healthy individuals [163, 164]. Platelet 
aggregation is induced by elevated leptin levels, a 
consequence of adipose tissue accumulation [165, 
166]. However, a pronounced decrease in platelet 
counts becomes evident as the disease advances from 
MASH to hepatic fibrosis. This progressive 
thrombocytopenia demonstrates utility as a predictor 
of advancing fibrosis [167]. In biopsy-confirmed 
MASLD cohorts, lower baseline platelet counts 
correlate with elevated HCC incidence [163]. 
Preclinical studies indicate that simple steatosis and 

insulin resistance alone fail to elicit increased 
intrahepatic platelet numbers. This phenomenon 
manifests only upon progression to MASH, 
characterized by intrahepatic platelet accumulation, 
aggregation, and activation [168]. Upon activation, 
platelets shed platelet-derived extracellular vesicles 
(pEVs) carrying mitochondria with compromised 
function—evidenced by diminished fatty acid 
β-oxidation, acetyl-CoA carboxylase 2 (ACC2) 
inactivation, and defective OXPHOS activity [169]. 
Such mitochondria can transfer to hepatocytes via 
pEVs, increasing the number of faulty lipid droplet 
(LD)—bound mitochondria, which disrupts 
hepatocyte lipid metabolism, causes excess LD 
buildup, heightened mitochondrial ROS, and 
apoptosis, and finally aggravates MASH [169]. These 
platelets can also release the α and δ granules laden 
with myriad molecules including pro-aggregatory 
molecules such as ADP, serotonin, and thrombin, as 
well as inflammatory cytokines, chemokines, and 
growth factors that can directly potentiate 
inflammatory responses [170, 171]. Platelet-derived 
microparticles (PMPs) also participate in this process 
[172, 173]. Notably, platelet-derived growth factor 
(PDGF)-β and PDGF-AA drive HSC activation and 
contribute to biliary fibrosis progression. In contrast, 
adenosine 5'-triphosphate (ATP) released from 
platelets suppresses the activation of human HSCs, 
revealing a complex, multifaceted role for platelets in 
modulating the fibrotic microenvironment [174-176].  

Platelet involvement in MASH progression to 
HCC exhibits context-dependent complexity, with 
reports suggesting both pro-tumorigenic and 
anti-tumor functions. Experimental evidence from 
CD-HFD mouse models implicates Kupffer cell- 
mediated platelet recruitment in the liver, facilitated 
by CD44-hyaluronan binding, as a driver of MASH 
progression. Critically, platelet-derived glycoprotein 
Ibα (GPIbα) has been demonstrated as essential for 
the development of MASH and subsequent HCC in 
this setting [168]. Conversely, studies employing 
orthotopic implantation of established HCC tumors or 
carcinogen/oncogene-driven HCC models reveal a 
protective role for platelets. In these models, platelets 
upregulate intrahepatic CD8+ T cells accumulation 
via CD40L release. This platelet-CD40L axis mediates 
robust anti-tumor immunity in a P2Y12 
receptor-dependent manner, thereby inhibiting HCC 
growth and metastasis [177]. 

These contradictory findings are likely 
attributable to distinct experimental models—with 
the former focusing on platelet involvement in 
MASLD-driven hepatocarcinogenesis, while the latter 
specifically examines platelet-mediated modulation of 
established tumor progression within the MASLD 
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microenvironment. Nevertheless, they converge to 
suggest that platelets play a pivotal role throughout 
MASLD pathogenesis. 

Gut Microbiota Modulates Immune 
Microenvironment, Immunotherapy and 
MASLD-HCC 

The portal vein delivers gut-derived microbial 
metabolites and microbiota components to the liver, 
establishing bidirectional gut-liver crosstalk that 
modulates hepatic physiology [178, 179]. Intestinal 
microbiota regulates liver homeostasis but can also 
produce damaging molecules and promote 
pathogenic overgrowth that compromises hepatic 
integrity [180-182]. Germ-free mice are effectively 
protected from obesity, whereas fecal microbiota 
transfer from obese mice promotes higher fat 
accumulation than transfers from lean counterparts 
[183, 184]. Gut microbiota also affects fat storage and 
fatty liver disease [185]. Typically, intestinal epithelial 
cells sustain gut barrier integrity primarily through 
tight junction complexes [186, 187]. However, during 
MASLD development and progression, the gut 
microbiota experiences a decline in diversity, which 
becomes more significant as the disease advances 
[188]. The abundance of certain microbiota, such as 
Streptococcus and gram-negative microbes, tends to 
increase [189]. These changes can damage the tight 
junctions between cells, impair gut barrier function, 
and facilitate portal vein translocation of microbiota 
and metabolites to the liver [189].  

Translocation of microbial components 
Compromised intestinal barrier function enables 

the pathological transfer of MAMPs, including 
lipopolysaccharide (LPS) and LTA, to the liver [185]. 
Hepatic TLR4 recognition of gram-negative bacterial 
LPS initiates NF-κB/MAPK signaling, driving 
inflammatory cytokine release and potentiating 
hepatic inflammation [190, 191]. The depletion of 
Akkermansia muciniphila (A. muciniphila) – a bacterium 
crucial for intestinal barrier integrity – is observed in 
fatty liver disease [192, 193]. Mechanistically, A. 
muciniphila prevents MASLD-HCC by 
downregulating γδT cells, upregulating CXCR6+ 
natural killer T cells (NKT), and inhibiting M1 
macrophages polarization through the reduction of 
hepatic TLR2 expression [192, 194]. LTA, as 
previously indicated, ligation on HSCs orchestrates 
the activation of ST2-positive Tregs [130]. 

Bacterial metabolites 
Microbial metabolites, including SCFAs, bile 

acids, and trimethylamine, may affect the immune 

system and contribute to MASH and MASLD-HCC 
[195-197]. In MASLD, bacterial metabolites drain into 
the liver via the portal vein, promoting intrahepatic B 
cells toward an inflammatory phenotype via MyD88- 
dependent or BCR signaling, and enhancing antigen 
presentation and costimulatory molecules expression 
[141]. SCFAs, including butyrate, propionate, and 
acetate, are enriched in MASLD-HCC patients and 
drive MASLD progression by regulating hepatic 
lipogenesis [198-202]. Acetate can promote tumor cell 
proliferation and HCC progression through upregu-
lation of O-GlcNAcylation [181]. SCFAs also impact 
immune cells. Th1 cells exposure to SCFAs activates 
both signal transducer and activator of transcription 3 
(STAT3) and mammalian target of rapamycin (mTOR) 
pathways, elevating B lymphocyte-induced matura-
tion protein 1 (Blimp-1) expression. This potentiates 
IL-10 production, mediating anti-inflammatory effects 
[156]. However, some investigators have found that 
increased circulating SCFA levels protect against 
inflammation by promoting IL-22 production by 
CD4+ T cells [157]. On the other hand, increased 
SCFAs can lead to an immunosuppressed response by 
increasing Tregs and attenuating CD8+ T cells 
responses [129]. Through free fatty acid receptor 
(FFAR)2 signaling, SCFAs modulate colonic Tregs 
population dynamics and function while exerting 
protective effects against colitis [203].  

Primary bile acids synthesized in the liver 
undergo extensive microbial transformation within 
the intestinal tract. This series of enzymatic 
reactions—including deconjugation, epimerization, 
7-dehydroxylation, reconjugation, 3-acylation, 
3-sulfation, and 3-glucosylation—converts them into 
significant microbiota-derived metabolites that 
critically influence the progression of MASLD [204]. 
Typically, bile acids act as endocrine mediators that 
critically maintain glucose and lipid balance via 
engagement of the G-protein-coupled bile acid 
receptor 5 (TGR5) and the nuclear farnesoid X 
receptor (FXR) [205, 206]. FXR activation reduces lipid 
synthesis and glucose levels by modulating SREBP-1C 
and gluconeogenesis-related genes [207]. Similarly, 
TGR5 helps maintain glucose homeostasis, alleviates 
hepatic steatosis, and suppresses inflammation [208]. 
Primary bile acids preferentially target FXR, while 
secondary bile acids prefer to combine with TGR5 
[209]. However, patients with MASH often exhibit 
elevated total primary bile acids with concurrent 
reductions in secondary bile acids and 3-indole 
propionic acid (IPA) [210]. During MASLD-HCC, 
elevated steroidogenic acute regulatory protein 1 
(STARD1) expression drives primary bile acid 
biosynthesis through mitochondrial cholesterol 
transport. This metabolic reprogramming potentiates 
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cancer stem cell self-renewal, enhances stem-like 
properties, and amplifies pro-inflammatory signaling 
in tumor-initiating cells [211]. Treatment with 
anti-cholesterol drugs and manipulation of gut 
microbiota can completely prevent MASLD-HCC 
formation [212]. Mechanically, the gut microbiome 
modulates liver CXCL16 expression via bile acids, 
impacting CXCR6+ NKT cell dynamics. Specifically, 
primary bile acids boost CXCL16 levels on sinusoidal 
endothelial cells, whereas secondary bile acids 
diminish them. This upregulation of CXCL16, the 
major ligand for CXCR6, drives CXCR6+ NKT cells 
accumulation in the liver. These accumulated cells are 
phenotypically activated and secrete elevated IFN-γ 
upon antigen encounter [213]. These findings suggest 
that primary and secondary bile acids may play 
distinct roles in MASLD-HCC. 

Changes in intestinal fungi 
Studies focusing on intestinal fungi in MASLD 

mice models are sparse. Previous works demonstrates 
that mice fed a high-fat diet (HFD) exhibit reduced 
fungal diversity and constitutional changes [214, 215]. 

This mouse model showed markedly decreased 
populations of specific fungal taxa, including the 
genera Alternaria, Saccharomyces, Septoriella, and 
Tilletiopsis, along with the species Saccharomyces 
cerevisiae and Tilletiopsis washingtonensis [214]. Distinct 
fecal mycobiome profiles distinguish early-stage 
MASLD patients from advanced-stage counterparts, 
particularly in non-obese individuals. This dysbiosis 
correlates with heightened systemic reactivity to 
Candida albicans, evidenced by elevated anti-C. albicans 
IgG titers [216]. Furthermore, transferring feces from 
patients with MASH into a WD-fed gnotobiotic mice 
model and treating them with antifungal 
amphotericin B showed reduced liver damage, 
suggesting that targeting intestinal fungi may be a 
potential therapy to ameliorate MASH [216].  

Collectively, gut barrier dysfunction, 
translocation of microbial components, and 
dysregulated bacterial metabolite abundance 
orchestrate MASLD-HCC pathogenesis by affecting 
the immune system to varying degrees (Figure 4). 

 

 
Figure 4: Dynamic changes of gut microbiota in MASLD-HCC. Microbial metabolism, bacterial metabolites and antigens are draining into the liver, altering the 
environment. Bacteria and antigens activate B cells through MyD88-dependent or BCR signaling pathways, which finally induce B cells to differentiate into plasma cells or 
inflammatory phenotype. LPS binds to TLR4 in the liver and activates the downstream NF-κB and MAPK signaling pathways, leading to the secretion of inflammatory cytokines 
and promoting liver inflammation. LTA induces a senescent phenotype in HSCs, leading to the release of SASP factors. IL-33 is subsequently exported from senescent HSCs 
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activating Tregs. SCFAs and primary bile acids tend to increase while 3-IPA and secondary bile acids tend to decrease. SCFAs activate STAT3 and mTOR in Th1 cells and 
upregulate transcription factor Blimp-1 consequently, thus promoting the secretion of IL-10 by Th1 cells. SCFAs also result in an immunosuppressed response by increasing Tregs 
and attenuating CD8+ T cells responses. Bile acids could bind to the TGR5 and FXR, thereby reducing lipid synthesis and glucose levels. Primary bile acids are used by the gut 
microbiome to upregulate the expression level of CXCL16 to mediate the accumulation of CXCR6+ NKT cells, which are activated and produce more IFN-γ upon antigen 
stimulation. Secondary bile acids had a negative effect on CXCL16 expression, causing an opposite result. Abbreviations: Blimp-1, B lymphocyte-induced maturation protein 1; 
CXCL16, C-X-C motif chemokine ligand 16; CXCR6, C-X-C motif chemokine receptor 6; FXR, farnesoid X receptor; HSC, hepatic stellate cell; IFN-γ, interferon gamma; IL-10, 
interleukin 10; IL-33, interleukin 33; IPA, indole propionic acid; LPS, lipopolysaccharide; LTA, lipoteichoic acid; mTOR, mammalian target of rapamycin; MyD88, myeloid 
differentiation primary response 88; MASH, metabolic dysfunction associated steatohepatitis; MASLD-HCC, metabolic dysfunction associated steatotic liver disease-related 
hepatocellular carcinoma; NKT, natural killer T cells; SCFAs, short-chain fatty acids; STAT3, signal transducer and activator of transcription 3; SASP, senescence-associated 
secretory phenotype; TGR5, G-protein-coupled bile acid receptor 5; Th, T helper cells; TLR4, Toll-like receptor 4; Tregs, regulatory T cells. 

 

Current Dilemma and Potential 
Therapeutic Strategies in MASLD-HCC 
Immunotherapy 

Currently, HCC treatment options encompass 
surgical interventions (resection/transplantation), 
ablation, intra-arterial therapies, radiotherapy, and 
systemic therapies. But clinicians choose treatment 
methods based on disease grading rather than 
etiology. In MASLD-HCC, excessive lipid 
accumulation and lipid-induced hepatic insulin 
resistance, dysregulated metabolism, the gut 
microbiota and its metabolic products, unique host 
genetic variants, and chronic inflammation-induced 
immune response collectively create a complex 
microenvironment, influencing therapy effectiveness. 
Current clinical trials focusing on MASLD-HCC 
remain scarce, most of which have investigated 
MASLD-HCC as part of non-viral HCC [217]. Despite 
their lack of specificity, these studies' results are still 
informative. Additionally, meta-analyses are 
attempting to determine the differences in therapeutic 
efficacy between MASLD-HCC and other etiologies. 
As mentioned previously and in former reviews [16], 
current research suggests that TKIs likely have 
comparable effectiveness, whereas ICIs might exhibit 
reduced efficacy in MASLD-HCC compared to viral 
HCC. Most studies on combination therapy with ICIs 
also report similar results [217, 218]. Mechanically, the 
distinct TME characteristic of MASLD-HCC, as 
summarized above-including activation of MDSCs, 
enriched CXCR2+ neutrophils, Treg cells and IgA+ 
cells, impaired CD8+ T cells recruitment and effector 
function, increased specific pro-cancerous CD8+ T 
cells subsets, accumulated CTNNB1 mutations and 
elevated SCFAs-may contribute to this phenomenon 
(Figure 5). 

Given the continuum of MASLD progression to 
HCC, therapeutic interventions targeting early-stage 
disease may effectively halt hepatocarcinogenesis. 
Many studies and therapeutic interventions have 
focused on preventing the progression of MASLD by 
effectively managing and improving the underlying 
disease pathology through targeted therapy. 
Resmetirom currently represents the sole US Food 
and Drug Administration (FDA)-approved 

pharmacotherapy for MASLD, exerting therapeutic 
effects via selective thyroid hormone receptor 
activation [219]. Here, we summarize current 
therapeutic drugs targeting MASLD and MASLD 
progression, aiming to reveal the potential strategies 
for preventing MASLD-HCC (Table 1). 

The ongoing elucidation of innate and adaptive 
immune dynamics within the MASLD-HCC 
microenvironment provides a mechanistic rationale 
for modulating these alterations to mitigate 
hepatocarcinogenesis and enhance immunotherapy 
efficacy. CXCR2 inhibitors can effectively improve the 
response of MASLD-HCC to PD-1 therapy by 
reducing neutrophil infiltration and ROS production 
[77, 220]. Anti-CD122 antibody treatment can 
decrease CD44+CXCR6+PD-1+CD8+ T cells, thus 
restoring CD8+ T cells function in MASLD and 
preventing HCC progression [221]. CXCR6+CD8+ T 
cells activity and function could be modulated 
therapeutically by targeting IL-15 or FOXO1 [94]. In 
the context of MASLD-HCC immunotherapy, 
metformin enhances CD8+ T cells activity and 
motility, likely by augmenting mitochondrial mass 
and promoting mitochondrial activation [94]. 
Furthermore, targeted therapy against activated 
macrophage subpopulations represents a potential 
strategy. In murine HCC models, targeting CCR2 
effectively suppresses tumor growth and metastasis 
through limiting TAM infiltration and enhancing 
CD8+ T cell-mediated antitumor response [222]. 
Besides, targeting the YTHDF1-EZH2-IL-6 signaling 
axis prevents the recruitment and activation of 
MDSCs, which could potentially enhance anti-PD-1 
efficacy [77]. Degradation of NETs by inhibiting their 
formation or function, e.g., using PAD4 inhibitors or 
DNase, can help reduce Tregs [223]. Employing 
mitochondria-targeted antioxidants or mitochondrial 
biogenesis promoters could also help restore the 
normal metabolic state of CD4+ T cells, thereby 
reducing their pro-inflammatory effects and 
preventing tumor progression [224, 225]. In addition, 
targeting the Wnt/β-catenin pathway with ICG001—a 
small-molecule inhibitor-reversed immune— 
excluded TME phenotypes in CTNNB1-mutant 
MASLD-HCC models. This intervention promoted 
robust CD8+ T cells infiltration and elevated M1/M2 
macrophage ratios, indicating restored anti-tumor 
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immunity. Therefore, using ICG001 to reprogram the 
immune microenvironment toward a 
pro-inflammatory phenotype may effectively improve 
the anti-tumor effect of ICIs in MASLD-HCC [101]. 
Targeting IL-21R signaling also has therapeutic 
potential by reducing the generation of IgA+ cells 
[149]. Since administration of A. muciniphila has been 
shown to decrease body weight, ameliorate IR in 
obese individuals and restore the efficacy of 
PD-1-based immunotherapy in cancer patients by 
increasing CD4+ T cells infiltration in tumors, it is 
reasonable to speculate that A. muciniphila could be 

used to improve the effect of immune therapy in 
MASLD-HCC [226, 227]. While Tregs promote 
immunotolerance and thus SCFAs might be 
considered a potential negative factor in cancer 
immunotherapy, SCFAs have been shown to enhance 
the anti-tumor activity of CTLs and the efficacy of 
CAR T cells in syngeneic murine melanoma and 
pancreatic cancer models [101]. Additional studies are 
required to elucidate how gut microbiota 
metabolite-regulated immune microenvironments 
influence immunotherapy efficacy (Table 2). 

 
 
 

 
Figure 5: Key factors contribute to the immunotherapy resistance in MASLD-HCC. RNA m6A reader protein YTHDF1 is increased, which recruits and activates 
MDSCs to cause cytotoxic CD8+ T cells dysfunction. CXCR2+ neutrophils secrete pro-tumorigenic cytokines and immunosuppressive molecules, inhibiting the function of 
CD8+ T cells. The formation of NETs recruits naïve CD4+ T cells and drives their differentiation into Tregs in a TLR4-dependent manner, establishing an immunosuppressive 
microenvironment. Enriched SCFAs increase Tregs and attenuate CD8+ T cells response, resulting in an immunosuppressed response. IL-21R-STAT1-c-Jun/c-Fos-IgA regulatory 
pathway is also activated, which leads to the induction of immunosuppressive IgA+ cells. These cells suppress CD8+ T cells by upregulating the expression of PD-L1 on the cell 
surface and producing the immunosuppressive cytokine IL-10, impairing tumor surveillance function. Accumulated CTNNB1 mutations elevate TNFRSF19 levels, suppressing the 
secretion of SASP-like cytokines, such as IL-6 and CXCL8, inhibiting the effect of CD8+ T cells. In addition, impaired motility and mitochondrial fitness in CD8+ T cells are 
observed, along with a low infiltration rate. CXCR6+PD-1+CD8+ T cells are also increased, which causes hepatocyte apoptosis through Fas/FasL interaction, generating an 
adverse effect in MASLD-HCC immunotherapy. Abbreviations: CXCR, C-X-C motif chemokine receptor; CXCL8, C-X-C motif chemokine ligand 8; CTNNB1, catenin beta 1; 
Fas, factor associated with suicide; FasL, Fas ligand; HCC, hepatocellular carcinoma; ICIs, immune checkpoint inhibitors; IL-6, interleukin 6; IL-10, interleukin 10; PD-1, 
programmed death receptor 1; PD-L1, programmed death ligand 1; m6A, N6-methyladenosine; MDSCs, myeloid-derived suppressor cells; MASLD-HCC, metabolic dysfunction 
associated steatotic liver disease-related hepatocellular carcinoma; NETs, neutrophil extracellular traps; SASP, senescence-associated secretory phenotype; SCFAs, short-chain 
fatty acids; TNFRSF19, tumor necrosis factor receptor superfamily 19; Tregs, regulatory T cells; YTHDF1, YTH N6-methyladenosine RNA binding protein F1. 
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Table 1 Current therapy drugs and treatment targeting MASLD progression 

Treatment  Mechanism Drug name Other 
interventions 

Study 
phase 

Clinical trial 
number or 
reference 

Results 

PPAR (PPARα/ 
PPARγ/PPARδ) 
agonist 

Promote the polarization of 
macrophages towards M2 
type and reduce inflammatory 
response 

Rosiglitazone NA II NCT00492700,
[236]  

Insulin sensitivity and ALT levels are 
elevated, liver fat deposition is reduced 

Pioglitazone NA IV NCT00227110 Liver fat deposition and fibrosis are reduced 
Pioglitazone Metformin IV NCT03796975 Liver fat deposition and fibrosis are reduced 
Pioglitazone Empagliflozin IV NCT03646292 Ongoing 
Pioglitazone Dapagliflozin NA NCT06649162 Ongoing 
GW501516 NA Preclinical [237, 238] Liver fat deposition and fibrosis are reduced 
Lanifibranor NA III NCT04849728 Liver fibrosis is reduced 
Lanifibranor Empagliflozin II NCT05232071 Ongoing 
Elafibranor NA II NCT01694849 Liver fibrosis is reduced 

CCR2/CCR5 
antagonist 

Block the CCR5/CCR2 and 
reduce hepatic infiltration of 
monocytes/macrophages 

Cenicriviroc NA II NCT02217475 Liver fibrosis is reduced 
Cenicriviroc Tropifexor II NCT03517540 Liver fat deposition and fibrosis are reduced 
Maraviroc NA Preclinical [239] Liver fat deposition and fibrosis are reduced 

CXCR2 antagonist Block CXCL1-CXCR2 axis and 
inhibit neutrophils and 
macrophages recruitment 

RS10289 NA Preclinical [240] Inflammatory responses, liver steatosis and 
liver damage are reduced 

RS504393 NA Preclinical [241] Inflammatory responses, liver steatosis and 
liver damage are reduced 

THR-β agonist Promote fatty acid oxidation 
and reduce liver fat 
accumulation by activating 
THR-β 

Resmetirom NA III NCT05500222 Liver fat deposition and fibrosis are reduced 
ASC41 NA I NCT04686994 The drug was well-tolerated and no safety 

concerns were found 
TERN-501 NA II NCT05415722 Liver fat deposition and fibrosis are reduced 
TERN-501 TERN-101 II NCT05415722 Liver fat deposition and fibrosis are reduced 
HSK31679 NA II NCT06168383 Ongoing 
VK2809 NA II NCT02927184 Cholesterol and liver fibrosis are reduced 
Kylo-0603 NA I NCT06365580 Ongoing 
ECC4703 NA I NCT05552274 Ongoing 
ALG-055009 NA I NCT05090111 Ongoing 

IL-6 receptor 
antagonist 

Inhibit IL-6-mediated 
signalling and attenuate 
inflammatory response and 
injury in hepatocytes by 
blocking the IL-6 receptor 

Tocilizumab NA Preclinical [242] Liver fat deposition and fibrosis are reduced 

NE inhibitor Reduce hepatic inflammation 
and early hepatic fibrosis by 
inhibiting NE activity and 
ameliorate early inflammation 
in MASLD-HCC 

Sivelestat NA Preclinical [71, 223] Insulin sensitivity is improved, 
inflammatory responses, liver steatosis and 
liver damage are reduced 

Angiotensin II 
receptor antagonist 

Inhibit TGF-β signalling 
pathway and reduce hepatic 
fibrosis, thereby ameliorating 
hepatic infiltration of CD8+ T 
cells 

Losartan NA II NCT00699036 Ongoing 

mTOR inhibitor Regulate Th17/Treg cells 
balance and enhance the 
immunosuppressive function 
of Treg cells, thereby 
attenuating MASH-associated 
inflammation and fibrosis 

Rapamycin NA Preclinical  [243] Liver fat deposition and fibrosis are reduced 
AZD2014 NA Preclinical [244, 245] Liver fat deposition is reduced, insulin 

sensitivity is improved, but there are some 
side effects (hyperglycemia and 
hyperlipidaemia) 

Everolimus NA Preclinical [246] Adipose synthesis and inflammatory 
responses are reduced 

Antiplatelet drug Inhibit platelet activation and 
aggregation by irreversibly 
inhibiting cyclooxygenase 
(COX-1) and reduce 
thromboxane A2 (TXA2) 
production 

Aspirin NA I/II NCT04031729 Liver fat deposition is reduced 

A phosphodiesterase inhibitor 
that works by inhibiting 
platelet aggregation and 
promoting blood vessel 
dilation 

Cilostazol NA I/II NCT04761848 Ongoing 

Inhibit P2Y12 receptor on 
platelets and block 
ADP-mediated platelet 
activation 

Clopidogrel NA Preclinical [247] Platelet activation and hepatocyte 
inflammation are reduced 
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Treatment  Mechanism Drug name Other 
interventions 

Study 
phase 

Clinical trial 
number or 
reference 

Results 

FXR/TGR5 agonist Activate FXR, regulate the 
synthesis, secretion and 
reabsorption of bile acids, 
which helps to reduce liver fat 
accumulation 

Obeticholic 
Acid 

NA II NCT01265498 Liver fibrosis is reduced 

Obeticholic 
Acid 

Atorvastatin II NCT02633956 LDLc and liver fibrosis are reduced 

Cilofexor NA II NCT03987074 Liver fibrosis is reduced 
Cilofexor Semaglutide& 

Firsocostat 
II NCT03987074 Liver fibrosis is reduced 

EDP-305 NA II NCT03421431, 
[248] 

ALT level is elevated, and liver fat 
deposition is reduced 

Tropifexor NA Preclinical [249] ALT level is elevated, and liver fat 
deposition is reduced 

Tropifexor Cenicriviroc II NCT03517540 Liver fat deposition and fibrosis are reduced 
MET409 NA II NCT04702490 Liver fat deposition is reduced 
TERN-101 NA II NCT04328077 Liver fat deposition is reduced 
TERN-101 TERN-501 II NCT05415722 Liver fat deposition and fibrosis are reduced 

Activate TGR5, regulate the 
synthesis, secretion and 
reabsorption of bile acids, 
which helps to reduce liver fat 
accumulation 

INT-777 NA Preclinical [250] Inflammatory responses, liver steatosis and 
liver damage are reduced 

FXR/TGR5 double agonist INT-767 NA Preclinical [250] Inflammatory responses, liver steatosis and 
liver damage are reduced 

Probiotics/prebioti
cs/synbiotics 

Regulate intestinal flora, 
reduce the abundance of 
harmful bacteria, strengthen 
intestinal barrier function, and 
reduce inflammatory response 

Lactobacillus  Bifidobacteriu
m 

NA NCT03467282,
[251] 

Ongoing, but former study has shown 
reduced ALT and AST levels and improved 
liver steatosis 

Bifidobacteriu
m 

Lactobacillus  NA NCT03467282,
[252] 

Ongoing 

VSL#3 NA I/II NCT03511365 Obvious benefit was not observed 
Oligofructose NA NA NCT02568605 Liver fibrosis is reduced 
Oligofructose-
enriched inuli 

NA NA NCT03184376 Liver fibrosis is reduced 

GLP-1 
agonist/GLP-1 
receptor agonist 

Activate PI3K/Akt signalling 
pathway and inhibit NF-κB 
signalling pathway, improve 
insulin sensitivity and prevent 
hepatocytes apoptosis 

Liraglutide NA II NCT01237119 ALT level is elevated, and liver fat 
deposition is reduced 

Tirzepatide NA II NCT04166773 Liver fibrosis is reduced 
Retatrutide NA  [253] Liver fat deposition is reduced 
Exenatide NA II/III NCT00650546 Liver fat deposition is reduced 
Efinopegdutid
e 

NA I NCT06052566 Ongoing 

Semaglutide NA II NCT02970942 Liver fibrosis is reduced 
Semaglutide Cilofexor II NCT04971785 Liver fibrosis is reduced 
Semaglutide Firsocostat II NCT04971785 Liver fibrosis is reduced 
Semaglutide Firsocostat&C

ilofexor 
II NCT03987074 Liver fibrosis is reduced 

Semaglutide NNC0194-049
9 

I NCT05766709 Ongoing 

Cotadutide NA II NCT04019561 Liver fat deposition is reduced 
HM15211 NA I NCT03744182 The drug was well-tolerated and no safety 

concerns were found 
ACC inhibitor Inhibit acetyl coenzyme A 

carboxylase (ACC) and reduce 
fat synthesis 

Firsocostat NA II NCT02856555 Liver fat deposition is reduced 
Firsocostat Semaglutide II NCT04971785 Liver fat deposition and fibrosis are reduced 
Firsocostat Semaglutide&

Cilofexor 
II NCT03987074 Liver fat deposition and fibrosis are reduced 

PF-05221304 NA II NCT03248882 Liver fat deposition is reduced 
PF-05221304 PF-06865571  II NCT03776175 Liver fat deposition is reduced 
WZ66 NA Preclinical [254] Liver fat deposition is reduced 

FASN inhibitors Inhibit fat synthase (FASN) 
and reduce Th17 cells 
differentiation, fat synthesis 
and pro-inflammatory effects 

Denifanstat 
(TVB-2640) 

NA III NCT04906421 Liver fibrosis is reduced 

TVB-3664 NA Preclinical [255] Triglyceride levels and liver fat are 
decreased 

FT-4101 NA Preclinical [255] Liver fat deposition and fibrosis are reduced 
Caspase inhibitor Inhibit the activity of caspase 

enzyme, reduce apoptosis and 
inflammation  

Emricasan NA II NCT02686762 Fail to improve liver histology in patients 
with MASH fibrosis despite target 
engagement and may have worsened 
fibrosis and ballooning 
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Treatment  Mechanism Drug name Other 
interventions 

Study 
phase 

Clinical trial 
number or 
reference 

Results 

GS-9450 NA II NCT00740610 Prevents apoptosis 
VX-166 NA Preclinical [256] Rate of apoptosis and inflammatory factor 

levels in hepatocytes are reduced 
Gal-3 inhibitors Inhibit galactoglucan-3 (Gal-3) 

and reduce inflammation and 
fibrosis 

Belapectin 
(GR-MD-02) 

NA II/III NCT04365868 Liver histology is improved, and 
oesophageal varices are prevented 

GM-CT-01 NA Preclinical [257] Inflammatory responses and liver fibrosis 
are reduced 

GB1211 NA I NCT03809052 The drug was well tolerated and no safety 
concerns were found 

LOXL2 inhibitor Inhibit lysyl oxidase-like 
protein-2 (LOXL2) and reduce 
collagen cross-linking and 
fibrosis 

Simtuzumab NA II NCT01672866 Failed to achieve the desired effect 
Solithromycin NA II NCT02510599 Liver fibrosis is reduced 

ASK1 inhibitor Inhibit apoptosis signaling 
regulation kinase 1 (ASK1) 
and reduce apoptosis and 
fibrosis 

Selonsertib NA III NCT03053050 Liver fibrosis is reduced 
SRT-015 NA I NCT04887038 Ongoing 

DGAT2 inhibitor Inhibit diacylglycerol 
acyltransferase 2 (DGAT2) and 
reduce triacylglycerol 
incorporation in the liver 

ION224 NA II NCT04932512 Liver fat deposition and fibrosis are reduced 

 

Table 2 Potential therapeutic targets/strategies addressing the mechanisms of immunotherapy resistance in MASLD-HCC 

Potential therapeutic 
targets/strategy 

Mechanism Cancer type Reference Specific 
Drugs 

Akkermansia muciniphila Increase the infiltration of CD4+ T cells MASLD-HCC [226, 227] NA 
Anti-CD122 antibody Decrease the amount of CD44+CXCR6+PD-1+CD8+ T cells MASLD-HCC [221] NA 
CCR2 inhibitor Reduce the infiltration of TAMs and reinvigorate the antitumor activity of CD8+ T cells HCC [222] NA 
CXCR2 inhibitor Reducing CXCR2+ neutrophils infiltration and ROS production MASLD-HCC [77, 220] AZD5069 
SCFAs Decrease the amount of SCFAs to reduce Tregs and improve CD8+ T cells responses MASLD-HCC NA NA 
IL-21R signalling blockade Decrease the amount of IgA+ cells and improve CD8+ T cells responses MASLD-HCC [149] NA 
Modulate IL-15 or FOXO1 Alter the activity and function of CXCR6+CD8+ T cells MASLD-HCC [94] NA 
PAD4 inhibitor/Dnase Degradate of NETs by inhibiting their formation or function and reducing Tregs MASLD-HCC [223] NA 
CTNNB1 mutation Inhibit Wnt/β-catenin pathway and reprogram the immune microenvironment towards 

a pro-inflammatory phenotype 
HCC [100] ICG001 

YTHDF1-EZH2-IL-6 
signaling axis 

Decrease the expression of YTHDF and recruitment of MDSCs MASLD-HCC [54] LNP-siRNA 

Metformin Increase mitochondrial mass and activation of CD8+ T cells MASLD-HCC [94] Metformin 
 
 
Currently, despite some success achieved in 

preclinical studies targeting specific mechanisms of 
MASLD-HCC, evaluating specific drugs in clinical 
trials remains limited. Some drugs are undergoing 
animal testing. Combining the small molecule CXCR2 
inhibitor AZD5069 with anti-PD-1 monoclonal 
antibody therapy significantly reduces tumor burden 
and extends survival in a MASLD-HCC mouse model 
[77]. Lipid nanoparticles (LNP)-encapsulated siRNA 
therapy is an FDA-approved approach for clinical use, 
and LNP-siRNA or YTHDF1 knockdown in 
combination with anti-PD-1 therapy has been proven 
to significantly increase the sensitivity of 
MASLD-HCC tumors to immunotherapy in mice 
models [54]. Combined metformin and anti-PD-1 
therapy also demonstrated good efficacy against 
MASLD-HCC [94]. The efficacy of antiplatelet agents, 
such as aspirin, and certain antifibrotic drugs has been 
demonstrated in HCC of other etiologies, including 

viral-related HCC. However, the therapeutic 
outcomes of these agents in MASLD-HCC remain 
inconclusive and warrant further investigation. 
Consequently, therapeutic development targeting 
these pathways exhibits significant promise in both 
preclinical and clinical settings. Prioritizing 
investigation of the aforementioned targets and 
agents represents a strategic approach to enhance 
immunotherapy efficacy and advance curative 
strategies for MASLD-HCC. 

Conclusion and Future Perspectives 
MASLD critically drives HCC development by 

progressively remodeling the hepatic immune 
microenvironment. This remodeling occurs 
throughout the disease spectrum, from steatosis to 
steatohepatitis, fibrosis, and ultimately HCC, where 
shifts in the metabolic landscape alter immune cell 
phenotypes/function and gut microbial communities. 
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These changes, in turn, influence MASLD 
progression, HCC development, and immunotherapy 
efficacy. The metabolic alterations in MASLD are 
multifaceted, extending beyond the widely 
recognized dysregulated lipid metabolism to 
encompass pivotal alterations in ammonia and 
glutamine handling [228]. Clinical evidence indicates 
elevated systemic ammonia levels and progressive 
downregulation of glutamine synthetase in MASH 
patients compared to simple steatosis [228]. Notably, 
enhanced glutamine catabolism—a hallmark 
metabolic adaptation in cancer—manifests in HCC 
through overexpression of glutaminase 1 (GLS1), 
which catalyzes the conversion of glutamine to 
glutamate. GLS1 inhibition attenuates tumor 
proliferation and suppresses epithelial-mesenchymal 
transition (EMT) [229]. Critically, GLS1 upregulation 
correlates with advanced clinicopathological features 
and stemness phenotypes, mechanistically driven by 
ROS-mediated activation of Wnt/β-catenin signaling 
that sustains cancer stemness [230]. Parallel 
investigations reveal that sustained 
hyperammonemia promotes HSC activation and 
fibrogenesis in MASLD models. Aberrant GLS1 
induction exacerbates oxidative stress, impairs 
very-low-density lipoprotein (VLDL) particle 
assembly, and ultimately potentiates hepatocyte lipid 
accumulation and MASH progression [231]. Novel 

diagnostic strategies employing dynamic monitoring 
of glutamine flux through GLS expression patterns 
establish its potential as a noninvasive biomarker for 
detecting hepatic malignancies [232]. 

This review synthesizes alterations in immune 
cell dynamics and gut microbiota composition during 
MASH and MASLD-HCC pathogenesis. Notably, 
mechanistic insights into the MASH-HCC transition 
and immunotherapy response patterns in this patient 
population remain inadequately explored. First, 
existing MASLD models in mice cannot effectively 
mimic the pathophysiological signature of human 
MASLD. Second, consistent conclusions are difficult 
to obtain using the numerous different rodent 
experimental models of MASLD and various HCC 
models in the MASH context (Table 3). Comparative 
analysis of MASLD rodent models is complicated by 
their differential recapitulation of human disease 
pathophysiology [233]. Furthermore, not all cases of 
MASH progress to liver tumors, and many studies on 
MASH and MASLD do not adequately address 
pathogenesis and treatment of MASLD-HCC. This 
lack of focus limits our understanding of the immune 
microenvironment and the treatment options for 
MASLD-HCC. Therefore, it is essential to conduct 
more studies and develop more relevant animal 
models for MASH progression to HCC in the future. 

 
 
 

Table 3. Roles of different immune cells in different MASLD-HCC models 

Cell subset Mouse Models Mechanism Reference 
Macrophages DEN + HFD MyD88 in myoblasts enhances MASLD-HCC development by promoting M2 

macrophages polarization 
[52] 

Myeloid-Lineage–Specific Heterozygous 
Deletion of Ncoa5 mice 

NCOA5 deficiency in macrophages as a key factor in the transition of MASH 
to HCC 

[22, 53] 

DEN + CDA-HFD The loss of NRG4 induces TAM-like macrophages and exhausted cytotoxic 
CD8+ T cells in MASLD-HCC 

[21] 

Neutrophils Streptozotocin + HFD NETs regulate the OXPHOS of naïve CD4+ T cells, drive their differentiation 
into Tregs 

[24, 60] 

Tumor cells + WD or DEN + ALIOS Pro-tumorigenic cytokines and immunosuppressive molecules secreted by 
CXCR2+ neutrophils 

[77] 

Dendritic cells Tumor cells + WD or DEN + ALIOS XCR1+ cDC1 mediate cDC1 and CD8 T cells interactions [77] 
CD8+ cytotoxic T 
cells 

Spatial transcriptomics The infiltration is diminished within tumor regions [100] 
CD-HFD Induce liver damage, upregulate exhausted markers and promoting HCC, 

auto-aggressive killing hepatocytes  
[19, 94, 
96] 

DEN + CD-HFD or DEN + HFHC YTHDF1 suppresses cytotoxic CD8+ T cells function by enhancing the 
secretion of IL-6 

[54] 

Spatial transcriptomics CD8+PD-1+ T cells inducible T cells ICOS+, MDSCs, and tumor-TAMs [100] 
MCD/CDAA/WD Reduce cell motility, impaire metabolic fitness [25, 94] 

B cells HFD-fed MUP-uPA mice IgA+ cells suppress CD8+ T cells, produce the immunosuppressive cytokine 
IL-10 

[27] 

Platelets CD-HFD Recruit of CD8+ T cells and NKT cells, drive HCC [168] 
Tumor cells + MCD or DEN + CDAA or CCl4 + 
WD 

Upregulate the accumulation of CD8+ T cells, inhibiting the growth and 
metastasis of HCC in MASH 

[177] 
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The response rate to immunotherapy is poor in 
MASLD-HCC. ICIs therapy seems to have 
encountered a significant setback in treating 
MASLD-HCC patients. Activation of MDSCs, 
enriched CXCR2+ neutrophils, Tregs, and IgA+ cells, 
diminished CD8+ T cells recruitment and functional 
impairment, increased specific pro-cancerous CD8+ T 
cells subsets, accumulated CTNNB1 mutations and 
elevated SCFAs may collectively contribute to this 
phenomenon. Research on gut dysbiosis-driven 
MASLD pathogenesis has elucidated key mechanisms 
centered on intestinal barrier compromise, which 
permits hepatic translocation of microbial 
components and metabolites (e.g., SCFAs, bile acids). 
These hepatotropic signals orchestrate 
immunometabolic reprogramming via upregulation 
of CXCR6+ NKT cells, suppressing M1 macrophages 
polarization, expanding Tregs, and attenuating CD8+ 
T cells effector functions. Compelling preclinical 
evidence demonstrates that microbiota—directed 
interventions-including fecal microbiota 
transplantation, probiotics, prebiotics, and synthetic 
biotics—effectively restore enteric homeostasis and 
ameliorate metabolic dysregulation and inflammation 
in MASLD models.  

Advances in multi-omics sequencing have 
propelled tumor precision medicine into clinical 
focus, utilizing molecular and genetic profiling to 
tailor cancer therapies based on individual tumor 
characteristics. Methodologically, integrative analysis 
of tumor transcriptomes and patient prognoses has 
yielded the SAHR (Score of Aggregated Hazard 
Ratio) model—a universal quantitative metric for 
assessing clinical aggressiveness. Applying this 
framework to HCC revealed three molecular subtypes 
with distinct prognostic outcomes among Asian 
populations, each exhibiting multifaceted molecular 
disparities [234]. Notably in HBV-related HCC, 
proteogenomic profiling of 159 patients through 
integrated multi-omics analysis (encompassing 
somatic mutations, copy number alterations, 
transcriptomics, proteomics, and phosphoproteomics) 
delineated three tumor subclusters with characteristic 
pathway activation patterns. This approach further 
identified pyrroline-5-carboxylate reductase 2 
(PYCR2) and alcohol dehydrogenase 1A (ADH1A) as 
robust prognostic biomarkers, with mechanistic 
studies confirming their roles in modulating 
pro-tumorigenic metabolic pathways [235]. However, 
such comprehensive multi-omics research on 
MASLD-HCC remains scarce. Spatial mapping at 
single-cell resolution reveals a previously 
unappreciated heterogeneity in immune cell 
distribution within MASLD-HCC. Contrary to prior 
models, immune cells are most abundant in adjacent 

non-tumor tissue, diminishing progressively towards 
the tumor core. Furthermore, spatial interactions shift 
from T cell networks towards immunosuppressive 
connections involving MDSCs and TAMs, potentially 
disrupting antitumor immunity [100]. Hence, further 
exploration of this heterogeneity in the distribution 
and composition of immune cells is warranted and 
may provide new directions for understanding 
immunotherapy resistance in MASLD-HCC. Every 
new mechanistic discovery may become the key to 
unlocking potential solutions to complex problems.  

Elucidating dynamic alterations in immune cell 
populations and gut microbiota during MASLD-HCC 
progression not only enhances our understanding of 
the disease process but also provides a foundation for 
solving therapeutic dilemma and identifying new 
drugs and targets. Nowadays, with the underlying 
reason for immunotherapy resistance and 
immunometabolic changes in MASLD-HCC 
gradually being revealed, new targets have already 
been floated. However, specific drugs undergoing 
evaluation in clinical trials and validated in robust 
animal models are still limited. The lack of 
etiology-based classification of treatments also 
contributes to the scarcity of targeted research on 
MASLD-HCC. Future studies must focus on 
addressing existing research gaps in these areas, 
exploring additional reasons for immunotherapy 
resistance, identifying novel targets, and developing 
effective drugs to achieve a cure for MASLD-HCC 
ultimately. With the rising prevalence of 
MASLD-HCC continuing unabated, clarifying the 
mechanisms linking the metabolic microenvironment 
and immune responses in MASLD-HCC will be 
crucial not only to enhance treatment efficacy but also 
to minimize side effects and enable personalized 
treatment for patients with this condition. 

Abbreviations 
ACC2: acetyl-CoA carboxylase 2; ADAM17: a 

disintegrin and metalloproteinase 17; ADH1A: 
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ATP: adenosine 5'-triphosphate; BAFF: B 
cell-activating factor; Blimp-1: B lymphocyte-induced 
maturation protein 1; Bregs: regulatory B cells; CCL2: 
C-C motif chemokine ligand 2; CCR2: C-C motif 
chemokine receptor 2; CDAA: choline-deficient and 
amino acid-defined diet; cDCs: conventional dendritic 
cells; cDC1: conventional type I dendritic cells; cDC2: 
conventional type II dendritic cells; CD-HFD: 
choline-deficient, high-fat diet; CPT: carnitine 
palmitoyltransferase; CELA1: chymotrypsin-like 
elastase family member 1; CTLA4: anti-cytotoxic 
T-lymphocyte antigen 4; CTNNB1: catenin beta 1; 
CXCL10: C-X-C motif chemokine ligand 10; CX3CR1: 
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C-X3-C motif chemokine receptor 1; CXCR6: C-X-C 
motif chemokine receptor 6; DCs: dendritic cells; 
EmKC: embryo-derived Kupffer cells; EMT: 
epithelial-mesenchymal transition; Fas: factor 
associated with suicide; FasL: Fas ligand; FFAR: free 
fatty acid receptor; FOXO1: Forkhead Box O1; FXR: 
farnesoid X receptor; GPIbα: glycoprotein Ibα; GZMB: 
granzyme B; GSDMD: gasdermin D; HBV: hepatitis B 
virus; HCC: hepatocellular carcinoma; HCV: hepatitis 
C virus; HFD: high-fat diet; HIF: hypoxia-inducible 
factor; HNPs: human neutrophil peptides; HSCs: 
hepatic stellate cells; ihTh17: inflammatory hepatic 
CXCR3+ Th17; ICAM: intercellular cell adhesion 
molecule; ICIs: immune checkpoint inhibitors; ICOS: 
inducible T cell costimulator; IFN-γ: interferon 
gamma; IgA: immunoglobulin-A; IgG: 
immunoglobulin-G; IgM: immunoglobulin-M; IR: 
insulin resistance; IL-1β: interleukin 1 beta; IPA: 
indole propionic acid; LCs: Langerhans cells; LCN: 
lipocalin; LD: lipid droplet; LDLR: low density 
lipoprotein receptor; LFA: leukocyte 
function-associated antigen; LNP: lipid nanoparticles; 
LPS: lipopolysaccharide; LTA: lipoteichoic acid; 
mTOR: mammalian target of rapamycin; m6A: 
N6-methyladenosine; MAdCAM-1: mucosal 
addressin cell adhesion molecule-1; MASH: metabolic 
dysfunction-associated steatohepatitis; MASLD: 
metabolic dysfunction-associated steatotic liver 
disease; MCP-1: monocyte chemoattractant protein-1; 
MCD: methionine-choline-deficient diet; MDSCs: 
myeloid-derived suppressor cells; MHC: major 
histocompatibility complex; MPO: myeloperoxidase; 
MPV: mean platelet volumes; MR: magnetic 
resonance; MT: metallothionein; MUFAs: 
monounsaturated fatty acids; MyD88: myeloid 
differentiation primary response 88; NAFLD: 
non-alcoholic fatty liver disease; MASLD-HCC: 
metabolic dysfunction-associated steatotic liver 
disease-related hepatocellular carcinoma; MAMPs: 
microbial-associated molecular patterns; NcDase: 
neutral ceramidase; NCOA5: nuclear receptor 
coactivator 5; NKT: natural killer T cells; NRG4: 
neuregulin 4; NE: neutrophil elastase; NETs: 
neutrophil extracellular traps; OSE: 
oxidative-stress-derived epitopes; OxLDL: oxidized 
low-density lipoproteins; OXPHOS: oxidative 
phosphorylation; pDCs: plasmacytoid dendritic cells; 
pEVs: platelet-derived extracellular vesicles; PD-1: 
programmed death receptor-1; PD-L1: programmed 
death-ligand 1; PUFAs: polyunsaturated fatty acids; 
PRRs: pattern recognition receptors; PDGF: 
platelet-derived growth factor; PDW: platelet 
distribution width; PMPs: platelet-derived 
microparticles; PYCR2: pyrroline-5-carboxylate 
reductase 2; ROS: reactive oxygen species; SASP: 

senescence-associated secretory phenotype; SAHR: 
Score of Aggregated Hazard Ratio; SCD: 
stearoyl-CoA desaturase; SCFAs: short-chain fatty 
acids; STARD1: steroidogenic acute regulatory 
protein 1; STAT3: signal transducer and activator of 
transcription 3; TAMs: tumor-associated 
macrophages; TG: triglyceride; TGF-β: transforming 
growth factor beta; TGR5: G-protein-coupled bile acid 
receptor 5; Th: T helper; Tregs: regulatory T cells; 
TREM2: triggering receptor expressed on myeloid 
cells 2; Trm: tissue-resident memory T cells; TKIs: 
tyrosine kinase inhibitors; TLRs: Toll-like receptors; 
TLS: tertiary lymphoid structures; TME: tumor 
microenvironment; TNF: tumor necrosis factor; 
TNFRSF19: tumor necrosis factor receptor 
superfamily 19; XCR1: X-C receptor 1; YTHDF1: 
YT521-B homology (YTH) m6A RNA-binding protein 
1 (YTHDF1); WD: western diet; VLDL: 
very-low-density lipoprotein. 
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