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Abstract 

Epithelial-mesenchymal transition (EMT) is a fundamental biological process that promotes cancer 
metastasis and chemoresistance. However, the therapeutic efficacy of EMT inhibitors remains limited. 
Ubiquitination, a critical post-translational modification, involves attaching ubiquitin molecules to 
proteins to regulate their function and stability. It modulates EMT by controlling key EMT transcription 
factors (EMT-TFs) and associated signaling pathways. Evidence indicates that ubiquitination-dependent 
regulation of EMT serves as a central mechanism underlying tumor metastasis and chemoresistance. 
Targeting specific deubiquitinases (DUBs) or E3 ligases can effectively reverse EMT-induced cancer 
progression and treatment resistance. These findings highlight the therapeutic potential of E3 ligase and 
DUB inhibitors in oncology. Collectively, ubiquitination-regulated EMT is pivotal in mediating metastasis 
and chemoresistance in malignant tumors. This review summarizes the molecular mechanisms of EMT 
and emphasizes ubiquitination's essential role in regulating EMT to promote tumor metastasis and 
chemoresistance. Consequently, developing inhibitors against specific E3 ligases and DUBs offers a 
promising strategy to improve cancer treatment outcomes. 
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Introduction 
Ubiquitination is a fundamental and reversible 

post-translational modification (PTM) that plays a 
pivotal role in eukaryotic cellular homeostasis by 
dynamically regulating protein stability, activity, 
localization, and function [1]. This modification 
process primarily involves ubiquitin molecules, 
which consist of 76 amino acids and are highly 
conserved across eukaryotes [2]. In mammalian cells, 
polyubiquitination typically occurs through the 
conjugation of ubiquitin via the initial methionine 
(M1) and seven lysine residues (K6, K11, K27, K29, 
K33, K48, K63) (Figure 1A) [3]. These distinct 

ubiquitin modifications exhibit functional diversity. 
For instance, K48- and K11-linked polyubiquitination 
predominantly serve as proteolytic signals directing 
26S proteasome-mediated substrate recognition and 
degradation [4, 5]. In contrast, K63-linked 
polyubiquitination can influence the functions of 
proteins involved in DNA damage response, signal 
transduction, and cell cycle control [6]. Notably, the 
M1-linked linear ubiquitination is formed through the 
N-terminal methionine residue of ubiquitin, playing a 
pivotal role in immune regulation and inflammatory 
responses by activating the NF-κB transcription factor 
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[5]. Furthermore, the remaining linkage types (K6, 
K27, K29, K33) exhibit pleiotropic roles that span 
protein activity modulation, intracellular signaling, 
genomic stability maintenance, cell cycle checkpoint 
control, and innate immune regulation [6, 7]. 
Deubiquitination is the reverse reaction catalyzed by 
deubiquitinases (DUBs), which remove ubiquitin 
chains to stabilize proteins and modulate biological 
processes. Collectively, the dynamic balance between 
ubiquitination and deubiquitination is crucial for 
maintaining the normal physiological functions of the 
cell, including protein degradation, DNA damage 
repair, the cell cycle, and signal transduction (Figure 
1B).  

Epithelial-Mesenchymal Transition (EMT) is a 
cellular reprogramming process in which epithelial 
cells lose their polarity and cell-cell adhesion 
properties while acquiring migratory and invasive 
mesenchymal characteristics [8]. This process, initially 
characterized in embryonic development and wound 
healing, is hijacked during cancer progression to drive 

metastasis, the leading cause of cancer-related 
mortality [9]. EMT is classified into three distinct 
types: Type 1 EMT governs normal developmental 
processes such as embryogenesis; Type 2 EMT 
facilitates tissue repair and is linked to inflammation 
and fibrosis; Type 3 EMT, associated with tumor 
progression, promotes invasion and metastasis 
(Figure 2) [10-12]. In oncology, EMT enables tumor 
cells to disseminate from the primary site, enhance 
invasiveness, and initiate systemic spread [13-15]. 
This process enhances cellular plasticity, allowing for 
transitions to hybrid epithelial/mesenchymal states 
that are highly aggressive and prone to metastasis 
[16]. Cytoskeletal reorganization during EMT alters 
cell shape and motility, promoting migration. 
Moreover, EMT activates cancer stem cell (CSC) 
properties, upregulating stemness genes that amplify 
metastatic potential and confer treatment resistance, 
partly due to acquired mesenchymal resilience to 
therapies [17, 18]. Overall, EMT promotes metastasis 
by enabling profound cellular plasticity. 

 
 

 
Figure 1. Different types of ubiquitinated chains and various physiological roles. (A) Ubiquitin chain can be classified into eight based on linkage types: Met1, K6, K11, 
K27, K29, K33, K48, and K63. (B) Different ubiquitination modifications play a specific role in various cellular processes, including cell cycle regulation, mitophagy, NF-κB 
signaling, membrane trafficking, DNA damage repair, innate immune response, and proteasomal degradation. 
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Figure 2. The three types of epithelial-mesenchymal transition (EMT) play distinct yet significant roles in various biological processes. Type 1 EMT is crucial 
for embryonic development, facilitating cell migration and differentiation, which are essential for processes such as gastrulation, neural crest cell migration, and organogenesis. 
Type 2 EMT is associated with fibrosis, promoting the transformation of epithelial cells into mesenchymal cells, which leads to excessive extracellular matrix (ECM) deposition, 
tissue remodeling, and ultimately organ dysfunction. Type 3 EMT is particularly critical in cancer metastasis, where primary tumor cells acquire invasive capabilities through EMT. 
These cells detach from the primary site and undergo five key steps: local invasion, intravasation, survival in the circulation, extravasation, and the formation of metastatic lesions. 
This process enables the spread of cancer to other parts of the body, resulting in the establishment of secondary tumors or metastatic disease. E: epithelial tumor cell, M: 
mesenchymal tumor cell, EM1, EM2/3:intermediate cell states, CTCs: circulating tumor cells. 

 
Ubiquitination critically regulates EMT by 

controlling the degradation and stability of key 
proteins through the ubiquitin-proteasome system 
(UPS) [19]. This process is primarily mediated by E3 
ligases and DUBs, which regulate the key EMT 
transcription factors (EMT-TFs) and EMT-associated 
signaling pathways [19]. Notably, the stability of 
Snail, a critical EMT transcription factor, is 
dynamically controlled by ubiquitination; 
dysregulation of this process enhances EMT and 
cancer progression [20]. For instance, in colorectal 
cancer (CRC), mitogen and stress-activated protein 
kinase 1 (MSK1) recruits USP5 to deubiquitinate and 

stabilize Snail, facilitating EMT and metastasis [21]. 
Conversely, in triple-negative breast cancer (TNBC), 
the E3 ligase Membrane Associated Ring-CH-Type 
Finger 2 (MARCH2) ubiquitinates Snail, driving its 
degradation and suppressing tumor growth and 
metastasis [22]. In non-small cell lung cancer 
(NSCLC), RNF187 promotes EMT and apoptosis 
resistance by activating MAPK/PI3K signaling path-
ways [23]. Dysregulated expression of ubiquitination- 
related enzymes, such as E3 ligases or DUBs, 
frequently promotes EMT activation across various 
cancers, driving enhanced cell migration, invasion, 
metastasis, and therapy resistance [24, 25]. Therefore, 
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ubiquitination profoundly influences tumor invasion, 
metastasis, and drug resistance by modulating EMT 
dynamics. This review summarizes the molecular 
mechanisms of EMT and highlights its pivotal roles in 
driving tumor metastasis and chemoresistance. We 
further elaborate on how EMT is regulated by specific 
E3 ligases and DUBs, which modulate key EMT 
inducers like ZEB1 and Snail via ubiquitination- 
mediated degradation or stabilization. Notably, 
targeting specific E3 ligases or DUBs can reverse 
EMT-associated metastasis and chemoresistance. 
These insights enhance our understanding of 
ubiquitination in EMT-driven tumor metastasis and 
drug resistance, supporting the development of E3 
ligase or DUB inhibitors as promising antitumor 
therapies. 

Overview of ubiquitination and 
deubiquitination 

Ubiquitination is initiated by E1 activating 
enzymes that form a thioester bond with ubiquitin in 
an ATP-dependent manner. This ubiquitin is then 
transferred to E2 conjugating enzymes, which 
collaborate with E3 ligases to attach ubiquitin to 
lysine residues or other sites on substrate proteins 
(Figure 3) [26]. This process can lead to proteasomal 
degradation or functional alterations of target 
proteins. The primary function of E1 activating 
enzymes is to initiate the activation process of 
ubiquitin molecules. Currently, eight distinct E1 
enzymes have been identified, including conventional 
enzymes such as UBA1, UBA6, UBA7, SAE, and NAE, 
as well as non-conventional enzymes like UBA4, 
UBA5, and ATG7 [27]. Around 40 E2 enzymes have 
been identified, which are responsible for selecting 
the specific lysine residues located on the target 
protein that will undergo covalent binding with the 
ubiquitin molecule [28]. E3 ligases play a critical role 
in determining substrate specificity by directly 
recognizing the target protein [29]. More than 800 E3 
ligases have been discovered, which are classified into 
three distinct families: the really interesting new gene 
(RING), homologous to E6AP carboxyl terminus 
(HECT), and RING-between-RING (RBR) E3 ligases 
[30]. They employ unique catalytic strategies to 
regulate protein fate. 

Deubiquitination counterbalances ubiquitination 
through removing ubiquitin from substrate proteins 
by a family of over 100 DUBs, which catalyze the 
hydrolysis of ubiquitin chains from substrates [31-33]. 
DUBs are implicated in a wide range of cellular 
processes, such as protein stability regulation, signal 
transduction, cell cycle control, DNA repair, and 
tumorigenesis [34]. These enzymes can be categorized 

into seven primary families: ubiquitin-specific 
proteases (USPs), ubiquitin carboxy-terminal 
hydrolases (UCHs), motif interacting with ubiquitin- 
containing novel DUB (MINDYs), JAMM/MPN 
domain-associated metallopeptidases (JAMMs), 
ovarian tumor-related proteases (OTUs), Machado- 
Joseph domain proteases (MJDs), and Zinc finger and 
UFSP domain protein (ZUFSP) [35]. Dysregulation of 
DUB activity is implicated in various diseases, 
particularly tumors [36] and neurodegenerative 
diseases [37]. DUBs have been shown to influence 
tumor progression and metastasis, with some DUBs 
acting as inhibitors while others promote tumor 
development. For instance, USP10 stabilizes p53 by 
deubiquitinating, thus counteracting Murine double 
minute 2 (MDM2)-mediated ubiquitination and 
inhibiting the growth of renal cell carcinoma (RCC) 
cells [38]. Furthermore, USP14 stabilizes the oncogene 
protein B-cell lymphoma 6 through deubiquitination, 
thereby promoting the proliferation of ovarian cancer 
(OC) cells [39]. Collectively, dysregulation of 
ubiquitination or deubiquitination disrupts this 
homeostasis, contributing to pathological conditions 
such as cancer, neurodegenerative disorders, 
cardiovascular diseases, and metabolic syndromes.  

EMT: Mechanisms and roles in cancer  
The EMT process involves key molecular 

alterations, including the downregulation of epithelial 
markers and the upregulation of mesenchymal 
markers, which collectively modify cell adhesion 
properties [40]. These molecular shifts are intrinsically 
coupled with cytoskeletal remodeling, directly 
impacting cellular morphology and motility. The 
EMT is regulated by key EMT-TFs, signaling 
pathways, and epigenetic modifications that influence 
gene expression changes [41, 42]. Among these 
EMT-TFs, zinc-finger proteins (Snail and Slug), 
zinc-finger E-box binding homeobox factors (ZEB1 
and ZEB2), and basic helix-loop-helix proteins (Twist1 
and Twist2) have been studied the most extensively 
[43, 44]. Specifically, Snail and Slug bind to the E-box 
motif in the CDH1 promoter region to repress 
E-cadherin expression while activating mesenchymal 
gene transcription, thereby driving EMT progression 
[45, 46]. Similarly, Twist1 and Twist2 suppress 
epithelial genes and promote the expression of 
mesenchymal genes, contributing to EMT-associated 
metastasis [47]. ZEB1 and ZEB2 further inhibit CDH1 
transcription via E-box binding, accelerating the 
transition to a mesenchymal phenotype [48, 49]. 
Collectively, these TFs orchestrate the expression of 
mesenchymal phenotypic markers and underpin the 
molecular dynamics of EMT.  
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Figure 3. Ubiquitination is a dynamic and reversible process. The process of ubiquitin transfer necessitates the coordinated action of three types of ubiquitinating 
enzymes. Initially, the E1 ubiquitin-activating enzyme activates ubiquitin in an ATP-dependent manner. Subsequently, the activated ubiquitin molecule is transferred from the E1 
enzyme to E2 ubiquitin-conjugating enzymes. Finally, E3 ubiquitin ligases facilitate the transfer of ubiquitin from E2 to target substrates, which may occur either directly or 
indirectly, depending on their structural characteristics and functional roles. Conversely, deubiquitinases (DUBs) can remove ubiquitin from substrates, thereby regulating the 
level of ubiquitination and the stability of proteins. 

 
Furthermore, the regulation of EMT involves 

multiple signaling pathways, including the TGF-β, 
Wnt/β-catenin, Notch, Hedgehog (Hh), and Hypoxia 
signaling [50]. These extracellular signals promote the 
transcription of EMT-TF, thereby regulating the EMT 
process [50]. Specifically, TGF-β signaling induces 
morphological and functional alterations in cells 
through both SMAD-dependent and non-SMAD- 
dependent mechanisms [51]. In the Smad-dependent 
pathway, TGF-β activation results in the 
transcriptional regulation of EMT-TFs, facilitating the 
downregulation of epithelial markers and 

upregulation of mesenchymal markers [52]. 
Additionally, in non-SMAD pathways, TGF-β 
engages MAPK (including ERK, JNK, and p38), 
Rho-like GTPase, and PI3K/AKT signaling to 
modulate EMT [53-55]. The Wnt/β-catenin signaling 
pathway plays a critical role in stabilizing EMT-TFs 
and enhancing the transcription of EMT-related 
genes, contributing to metastasis [56]. Under hypoxic 
conditions, Notch signaling amplifies hypoxia- 
inducible factor-1α (HIF-1α)-mediated activation of 
the lysyl oxidase (LOX) gene, which facilitates Snail 
expression and EMT progression [57]. Furthermore, 
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Notch signaling interacts with Wnt and TGF-β 
signaling, jointly regulating the expression of EMT-TF 
and enhancing the EMT in tumor contexts [58]. Hh 
signaling activation occurs via ligand binding, leading 
to Gli transcription factor nuclear translocation and 
subsequent regulation of EMT-TFs, including Snail 
and Twist family members [59, 60].  

EMT involves the transformation of epithelial 
cells into mesenchymal phenotypes, enhancing cell 
motility, invasiveness, and stemness [61]. This process 
is reactivated in cancers and directly contributes to 
tumor metastasis and treatment resistance [62, 63]. 
Mechanistically, key signaling pathways (TGF-β, 
Wnt/β-catenin, Notch, Hh, and Hypoxia) promote 
the expression of EMT-TFs (Snail, Twist, ZEB), which 
collectively repress E-cadherin while upregulating 
mesenchymal markers like vimentin and N-cadherin 
[62, 64-66]. Matrix metalloproteinases (MMPs) 
facilitate invasion by degrading extracellular matrix 
components and activating EMT-associated signals 
[67]. EMT also enhances cellular adaptability within 
hypoxic tumor microenvironments, contributing to 
survival under metabolic stress [68]. Beyond 
promoting motility and invasiveness, EMT is linked 
to increased stemness and the activation of 
anti-apoptotic mechanisms and multidrug resistance 

efflux pumps, which together heighten tumor 
heterogeneity and treatment resistance [69]. 
Moreover, EMT cooperates with immunosuppressive 
elements in the tumor microenvironment, reducing 
sensitivity to immunotherapies. In NSCLC, 
EMT-induced immunosuppression correlates with 
poor patient outcomes [70]. Furthermore, in 
mesenchymal tumors such as osteosarcoma (OS), the 
EMT phenotype is also associated with chemotherapy 
resistance [69, 71]. Furthermore, the high expression 
of EMT-TFs such as Snail and Slug significantly 
enhanced the cisplatin resistance in ovarian 
carcinoma (OC) [72]. Collectively, the EMT process is 
closely related to tumor cell invasion, metastasis, and 
treatment resistance. 

Ubiquitination in regulating EMT 
Ubiquitination plays a key role in regulating 

EMT [19]. Several E3 ligases (ubiquitination) and 
DUBs (deubiquitination) critically regulate EMT by 
modulating core EMT-TFs such as Snail/Slug, 
ZEB1/2, and Twist1 (Figure 4, Table 1, and Table 2), 
as well as key EMT-associated signaling networks 
such as TGF-β, Wnt/β-catenin signaling, Notch, Hh, 
and hypoxia signaling (Figure 5, Table 1, and Table 2). 

 

 
Figure 4. The role of E3s and deubiquitinases (DUBs) involves key transcript factors in Epithelial-mesenchymal transition (EMT) regulation, including 
Snail, Slug, ZEB1, ZEB2, and Twist1. (A) E3 ligases ubiquitinate Slug or Snail to regulate EMT. (B) E3 ligases ubiquitinate ZEB1 or ZEB2 to regulate EMT. (C) DUBs 
ubiquitinate Twist1 to regulate EMT. (D) DUBs ubiquitinate Slug or Snail to regulate EMT. (E) E3 ligases ubiquitinate ZEB1 or ZEB2 to regulate EMT. (F) DUBs ubiquitinate 
Twist1 to regulate EMT. 
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Figure 5. The role of E3s and DUBs involves key signaling pathways in EMT regulation, including TGF-β signaling, Wnt/β-catenin signaling, Hypoxia 
signaling, Hedgehog signaling, and Notch signaling. These pathways modulate the activity of EMT transcription factors through various mechanisms, thereby promoting 
or inhibiting the EMT process. The E3s are marked with blue icons, and DUBs are marked with pink icons. 

 

Table 1. E3 ligases in EMT regulation 

Protein Substrates Effect on EMT Ref. 
SPSB3 Snail Negatively regulates EMT by degrading Snail [74] 
CHIP Snail, Slug Negatively regulates EMT by degrading Snail and Slug [75, 76] 
MARCH2 Snail Negatively regulates EMT by promoting the degradation of Snail. [22] 
HECTD1 Snail Negatively regulates EMT by degrading Snail. [92]  
Pellino-1 Snail, Slug Positively regulates EMT by stabilizing Slug and Snail. [93, 94] 
MDM2 Snail, Slug, SMAD2/3 Positively regulates EMT by stabilizing Slug and Snail; activating the TGF-β signaling pathway. [77, 78, 163] 
A20 (TNFAIP3)  Snail Positively regulates EMT by stabilizing Snail through monoubiquitination [96] 
β-TRCP1 
(FBXW1) 

Snail, Slug, Twist1, SMAD4, 
β-catenin 

Negatively regulates EMT by degrading Slug, Snail, Twist1, and inhibiting TGF-β and 
Wnt/β-catenin signaling. 

[79, 80, 144, 
158, 184] 
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Protein Substrates Effect on EMT Ref. 
FBXW7 
(FBW7) 

Snail, ZEB1, ZEB2, Notch1 Negatively regulates EMT by regulating Snail, ZEB1, and ZEB2; inhibiting Notch signaling. [81, 131, 132] 

FBXL5 Snail Negatively regulates EMT by degrading Snail. [82, 83] 
FBXL14 
(Ppa) 

Snail, Slug, Twist, ZEB2 Negatively regulates EMT by degrading Snail, Slug, ZEB2, and Twist. [84, 85, 145] 

FBXO3 Twist1 Positively regulates EMT by enhancing USP4-induced Twist1 stabilization. [148] 
FBXO11 Snail, ZEB1, β-catenin Negatively regulates EMT by degrading Snail, ZEB1, and inhibiting Wnt/β-catenin signaling. [86, 128] 
FBXO28 Snail Negatively regulates EMT by degrading Snail. [87] 
FBXO31 Snail Negatively regulates EMT by degrading Snail. [88] 
FBXO45 Twist, Snail, Slug, and ZEB2 Negatively regulates EMT by degrading Twist, Snail, Slug, and ZEB2. [89] 
TRIM15 / Positively regulates EMT by activating the Wnt/β-catenin signaling. [191] 
TRIM28 / Positively regulates EMT by activating the Wnt/β-catenin signaling. [192] 
TRIM21 Snail Negatively regulates EMT by degrading Snail. [90] 
TRIM26  ZEB1 Negatively regulates EMT by degrading ZEB1. [91, 129] 
TRIM46 Axin1 Positively regulates EMT by degrading Axin1 and activating the Wnt/β-catenin signaling [190] 
TRIM50 Snail Negatively regulates EMT by degrading Snail. [91] 
TRIM59 RBPJ Positively regulates EMT by stabilizing RBPJ and activating Notch signaling. [213] 
TRIM67 SMAD3 -Negatively regulates EMT by degrading SMAD3 and inhibiting TGF-β signaling. 

-Positively regulates EMT by activating Notch signaling. 
[159, 210] 

TRAF6 β-catenin -Positively regulates EMT by degrading GSK3β and activating the Wnt/β-catenin signaling. 
-Negatively regulates EMT by inhibiting Wnt/β-catenin signaling. 

[188, 189] 

HERC3 SMAD7, 
EIF5A2 

Positively regulates EMT by degrading Smad7 and activating TGF-β signaling 
Negatively regulates EMT by degrading EIF5A2. 

[161, 162] 

SIAH ZEB1 Negatively regulates EMT by degrading ZEB1. [130] 
NEDD4L TGF-β, TβRII, β-catenin, 

HIF1α 
Negatively regulates EMT by inhibiting TGF-β, Wnt/β-catenin, and Hypoxia signaling. [160, 187] 

RBX1 Twist1 Positively regulates EMT by inhibiting FBXO45-induced Twist1 degradation.  [147] 
RNF8  Slug, Twist1, 

GSK3β/β-catenin 
Positively regulates EMT by stabilizing Slug and Twist1; activating Wnt/β-catenin signaling [95, 146, 193]  

RNF43 β-catenin Negatively regulates EMT by inhibiting Wnt/β-catenin signaling. [183] 
RNF61 
(MKRN1) 

SNIP1 Positively regulates EMT by degrading SNIP1 and activating TGF-β signaling.  [164] 

RNF111 SMAD3 Positively regulates EMT by activating TGF-β/SMAD3 signaling. [165, 166] 
TTC3 Smurf2 Positively regulates EMT by inhibiting Smurf2-induced TGFR and SMAD degradation and 

activating TGF-β signaling. 
[167] 

SPOP Twist1 Negatively regulates EMT by degrading Twist1. [142] 
Smurf1 TGF-βRII Negatively regulates EMT by degrading TGF-βRII and inhibiting TGF-β signaling.  [154] 
Smurf2  SMAD1/2, TGF-βRI, HIF1α Negatively regulates EMT by inhibiting TGF-β and Hypoxia signaling. [155-157, 227] 
Siah1-SIP-Skp1 β-catenin Negatively regulates EMT by degrading β-catenin and inhibiting Wnt/β-catenin signaling. [186] 
VHL HIF1α, HIF2α Negatively regulates EMT by degrading HIF1α/ HIF2α and inhibiting Hypoxia signaling. [222, 223] 
Stub1 HIF2α Negatively regulates EMT-associated vascular remodeling by degrading HIF2α and inhibiting 

Hypoxia signaling under acute hypoxia conditions. 
[229] 

DTX3 NICD Negatively regulates EMT by degrading NICD and inhibiting Notch signaling. [206] 
WWP2 NICD Negatively regulates EMT by downregulating Notch activity. [207] 
MIB1 / Positively regulates EMT by activating Notch signaling. [211] 
BTRC Twist1 Negatively regulates EMT by ubiquitination-mediated degradation of Twist1. [143] 

 

Table 2. DUBs in EMT regulation 

Protein Substrates Effect on EMT Ref. 
USP1 Snail, TAK1 Positively regulates EMT by stabilizing Snail; activating TGF-β signaling by stabilizing TAK1. [97, 168] 
USP2 Snail Positively regulates EMT by stabilizing Snail.  [99] 
USP2a TβRI/II Positively regulates EMT by stabilizing TβRI/II and activating TGF-β signaling. [174] 
USP3 Snail, SUZ12 Positively regulates EMT by stabilizing Snail and SUZ12. [100, 175] 
USP4 Snail, Twist1, TβRI Positively regulates EMT by stabilizing Snail and Twist1; activating TGF-β signaling. [101, 148, 169, 170] 
USP5 Snail, Slug, Twist1, 

β-catenin  
Positively regulates EMT by stabilizing Snail, Slug, and Twist1; activating β-catenin signaling. [21, 122, 149, 196] 

USP7  β-catenin, HIF-1α Positively regulates EMT by activating β-catenin and Hypoxia signaling. [197-199, 230] 
USP8 TβRII Positively regulates EMT by stabilizing TβRII and activating TGF-β signaling. [176] 
USP9X Snail, HIF-2α Positively regulates EMT by stabilizing Snail; activating Hypoxia signaling. [102, 231] 
USP10  Snail, Slug, ZEB1, 

SMAD4 
-Positively regulates EMT by stabilizing Snail and Slug; activating TGF-β signaling. 
-Negatively regulates EMT by degrading ZEB1. 

[103, 123, 140, 172] 
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Protein Substrates Effect on EMT Ref. 
USP11  Snail, TβRII Positively regulates EMT by stabilizing Snail; activating TGF-β signaling by stabilizing TβRII. [104, 177] 
USP13 Snail, Twist1, WISP1 Positively regulates EMT by stabilizing Snail and Twist1; activating Wnt/β-catenin signaling by stabilizing 

WISP1. 
[105, 150, 200] 

USP15 β-catenin Positively regulates EMT by stabilizing β-catenin and activating Wnt/β-catenin signaling. [201] 
USP17 Snail, SMAD4 Positively regulates EMT by stabilizing Snail; activating TGF-β signaling.  [106, 171] 
USP18  Snail, ZEB1, Twist1 Positively regulates EMT by stabilizing Snail, Twist1, and ZEB1. [107, 136, 151] 
USP19 TβRI -Positively regulates EMT by USP19-CY, which stabilizes TβRI and TβRII to activate TGF-β signaling. 

-Negatively regulates EMT by USP19-ER, which inhibits EMT by reducing TβRI surface expression. 
[173] 

USP20 Slug Positively regulates EMT by stabilizing Slug. [124] 
USP21 ZEB1 Positively regulates EMT by stabilizing ZEB1. [137] 
USP22 ZEB1 Positively regulates EMT by stabilizing ZEB1. [133, 195] 

ADAM9 Negatively regulates EMT by stabilizing ADAM9 and Wnt/β-catenin signaling. 
USP25 β-catenin Positively regulates EMT by stabilizing β-catenin and activating Wnt/β-catenin signaling. [202] 
USP26 Snail -Positively regulates EMT by stabilizing Snail. 

-Negatively regulates EMT by stabilizing SMAD7 and inhibiting TGF-β signaling. 
[108, 178] 

USP27X Snail Positively regulates EMT by stabilizing Snail. [109] 
USP28 Snail, NICD Positively regulates EMT by stabilizing Snail and NICD, activating Notch-induced EMT [110, 208] 
USP29  Snail, Twist1 Positively regulates EMT by stabilizing Snail and Twist1. [111, 152]  
USP30 Snail Positively regulates EMT by stabilizing Snail. [112] 
USP34 Axin1 Negatively regulates EMT by stabilizing Axin1 and Wnt/β-catenin signaling. [194] 
USP35 Snail Positively regulates EMT by stabilizing Snail. [113] 
USP36 DOCK4 Positively regulates EMT by stabilizing DOCK4 and activating Wnt/β-catenin signaling. [203] 
USP37 Snail, Gli-1 Positively regulates EMT by stabilizing Snail; activating Hh signaling.  [114, 238] 
USP39 ZEB1 Positively regulates EMT by stabilizing ZEB1. [129] 
USP41 Snail Positively regulates EMT by stabilizing Snail. [115] 
USP42  FZD Negatively regulates EMT by stabilizing FZD and suppressing the Wnt signaling pathway. [182] 
USP43 ZEB1 Positively regulates EMT by stabilizing ZEB1. [138] 
USP47 Snail Positively regulates EMT by stabilizing Snail. [116] 
USP51 ZEB1 Positively regulates EMT by stabilizing ZEB1. [134, 135] 
BRCC3 ZEB1 Positively regulates EMT by stabilizing ZEB1. [139] 
DUB3 Snail, Slug, Twist Promotes EMT by stabilizing Snail, Slug, and Twist. [98, 125] 
OTUB1 Snail Positively regulates EMT by stabilizing Snail. [117] 
OTUB2 β-catenin Positively regulates EMT by stabilizing β-catenin and activating Wnt/β-catenin. [204] 
OTUD4 Snail Positively regulates EMT by stabilizing Snail. [118] 
OTUD6B VHL Negatively regulates EMT by stabilizing VHL or mutated VHL, inhibiting Hypoxia signaling through 

downregulating HIF-1α or HIF-2α. 
[225, 226] 

Trabid Twist1 Negatively regulates EMT by degrading Twist1 [153] 
EIF3H  Snail Positively regulates EMT by stabilizing Snail. [119] 
JOSD1 Snail Positively regulates EMT by stabilizing Snail. [120] 
PSMD14 Snail Positively regulates EMT by stabilizing Snail. [121] 

 

Ubiquitination regulation of EMT-TFs 

Snail/Slug regulation 

Snail and Slug are key EMT-TFs involved in the 
regulation of EMT by suppressing E-cadherin 
expression [73]. The stability and activity of 
Snail/Slug are primarily governed by E3 ligases and 
DUBs. Generally, E3 ligases inhibit EMT by 
facilitating the ubiquitination and proteasomal 
degradation of these proteins (Table 1). For instance, 
SPRY Domain-Containing SOCS Box Protein 3 
(SPSB3) promotes Snail degradation in a GSK-3β 
phosphorylation-dependent manner to limit EMT 
[74]. C-terminus of HSC70-interacting protein (CHIP) 
ubiquitinates Snail by K48-linked ubiquitin chains, 
leading to its degradation and inhibiting the EMT 
process [75, 76]. Similarly, MARCH2 directly interacts 
with Snail to induce its ubiquitination and subsequent 

proteasomal degradation, thereby suppressing EMT 
[22]. Other E3 ligases, such as MDM2 [77, 78], 
FBXW1/β-TRCP1 [79, 80], FBXW7/FBW7 [81], FBXL5 
[82, 83], FBXL14/Ppa [84, 85], FBXO11[86], FBXO28 
[87], FBXO31 [88], FBXO45 [89], TRIM21 [90], TRIM50 
[91], and HECTD1 [92] can degrade Snail or Slug to 
inhibit EMT. F-box proteins play a major role in 
regulating the functions of Snail and Slug proteins, 
and are also closely related to tumor metastasis. These 
E3 ligases are usually downregulated in aggressive 
cancers, enabling Snail accumulation to promote 
EMT. However, a few E3 ligases like Pellino-1 [93, 94] 
and RNF8 [95] can stabilize Snail or Slug by 
K63-linked ubiquitin chains to facilitate EMT. 
Additionally, A20 (TNFAIP3) stabilizes Snail through 
monoubiquitination, thereby promoting EMT in 
response to TGF-β1 [96]. 
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Conversely, DUBs stabilize Snail or Slug by 
removing ubiquitin modifications, thereby driving the 
EMT process (Table 2). For instance, USP1 stabilizes 
Snail by removing K48-linked polyubiquitin chains, 
increasing its stability and promoting EMT 
progression [97]. Similarly, DUB3 can also stabilize 
Snail through deubiquitination, thereby promoting 
the EMT process [98]. Other DUBs such as USP2 [99], 
USP3 [100], USP4 [101], USP5 [21], USP9X [102], 
USP10 [103], USP11 [104], USP13 [105], USP17 [106], 
USP18 [107], USP26 [108], USP27X [109], USP28 [110], 
USP29 [111], USP30 [112], USP35 [113], USP37 [114], 
USP41 [115], USP47 [116], OTUB1 [117], OTUD4 [118], 
Eukaryotic translation initiation factor 3 subunit H 
(EIF3H) [119], Josephin domain-containing 1 (JOSD1) 
[120], PSMD14 [121] enhance the stability of Snail by 
removing ubiquitin chains to stabilize it, facilitating 
EMT progression. Furthermore, only a few DUBs like 
USP5 [122], USP10 [123], USP20 [124], and DUB3 [125] 
can stabilize Slug by deubiquitinating to promote the 
EMT. Thus, DUBs mainly promote EMT by stabilizing 
Snail. 

ZEB1/2 regulation 

ZEB1 and ZEB2 act as master transcriptional 
repressors of EMT, primarily inhibiting E-cadherin 
expression to disrupt intercellular junctions and 
initiate EMT [126]. They also induce the expression of 
mesenchymal markers, including vimentin, thereby 
enhancing cellular migration and invasion capabilities 
[127]. The stability of ZEB1 and ZEB2 is dynamically 
regulated by ubiquitination and deubiquitination 
(Table 1 and Table 2). Specific E3 ligases, such as 
FBXO11, directly ubiquitinate and degrade ZEB1 to 
inhibit EMT [128]. Additional E3 ligases such as 
TRIM26 [129], SIAH [130], FBXO45 [89], FBXW7 [131, 
132], and FBXL14 [85], which can also negatively 
regulate EMT by targeting ZEB1 or ZEB2 for 
degradation.  

DUBs critically regulate ZEB1 stability through 
deubiquitination to regulate EMT and metastasis. For 
instance, USP22 stabilizes ZEB1 to activate 
ZEB1-mediated transcriptional activation and drive 
EMT [133]. Similarly, USP51 stabilizes ZEB1 through 
deubiquitination, thereby promoting mesenchymal 
activation and stromal recruitment in gastric cancer 
(GC) and lung adenocarcinoma (LUAD) [134, 135]. 
Moreover, CDK4/6 further amplifies this process in 
LUAD by phosphorylating USP51 [134]. Other DUBs 
such as USP18 [136], USP21 [137], USP39 [129]. USP43 
[138], and BRCA1-BRCA2-containing complex 
subunit 3 (BRCC3) [139] enhance the stability of ZEB1 
by removing ubiquitin chains, facilitating cell 
migration and EMT progression. Conversely, USP10 
promotes ZEB1 degradation in CRC by removing 

K27-linked ubiquitin chains, thereby inhibiting EMT 
[140]. These findings underscore the critical dynamic 
balance between ubiquitination by E3 ligases and 
deubiquitination by DUBs in controlling ZEB1 
stability, thereby regulating the EMT process. 

Twist1 regulation 

Twist1 is another critical transcription factor in 
regulating EMT by directly binding to the E-box motif 
to repress E-cadherin expression and activate mesen-
chymal genes [141]. Its stability is mainly regulated 
through the ubiquitination and deubiquitination 
processes to control the progression of epithelial- 
mesenchymal transition (Table 1 and Table 2). For 
instance, the E3 ligase SPOP (speckle-type POZ 
protein) ubiquitinates and degrades Twist1 to 
suppress EMT progression [142]. Other E3 ligases like 
BTRC [143], β-TRCP [144], FBXL14 [145], and FBXO45 
[89] promote the degradation of Twist1 to inhibit 
EMT. Conversely, E3 ligase RNF8 [146], RBX1[147], 
and FBXO3 [148] stabilize Twist1 to activate EMT and 
cancer progression. Furthermore, DUBs can stabilize 
Twist1 to promote EMT. For instance, USP5 stabilizes 
Twist1 through deubiquitination, thereby activating 
EMT in bladder cancer [149]. Moreover, USP13 
similarly stabilizes Twist1 to facilitate EMT [150]. 
Other DUBs like DUB3 [125], USP4 [148], USP18 [151], 
and USP29 [152] can also stabilize Twist1 through 
deubiquitination, thereby facilitating EMT 
progression. Conversely, DUB TRAF-binding domain 
(Trabid) can promote the degradation of Twist1 by 
removing K63-linked ubiquitin chains, leading to its 
degradation and EMT inhibition in hepatocellular 
carcinoma (HCC) [153]. Together, E3 ligases and 
DUBs regulate Twist stability to control EMT 
progression.  

Ubiquitination Regulation in EMT-Related 
Signaling Pathways 

TGF-β signaling regulation 

TGF-β signaling is a prominent pathway for the 
induction of EMT [8]. The canonical SMAD pathway 
involves TGF-β ligands binding to TGF-β type II 
receptor (TβRII), which then recruits and activates 
TGF-β type I receptor (TβRI) [52]. Activated TβRI 
phosphorylates SMAD2 and SMAD3, which form 
complexes with SMAD4 that translocate to the 
nucleus to regulate EMT-related gene expression [52]. 
However, SMAD7 inhibits this pathway by directly 
binding TβRI or disrupting SMAD complex formation 
[52]. Ubiquitination critically regulates 
TGF-β/SMAD-induced EMT by targeting pathway 
components (Table 1). For instance, Smurf1 directly 
ubiquitinates TβRII by K48-linked polyubiquitin 
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chains to degrade it, suppressing TGF-β-induced EMT 
[154]. Similarly, Smurf2 promotes proteasomal 
degradation of SMAD2 and TGFβ receptor, thereby 
suppressing TGF-β-induced EMT [155-157]. 
Furthermore, other E3 ligases like β-TrCP [158], 
TRIM67 [159], and NEDD4L [160] also negatively 
regulate TGF-β-induced EMT by SMAD proteins or 
TGF-β receptors. Conversely, HERC3 promotes the 
autophagic degradation of Smad7 through K63-linked 
polyubiquitin chains, thereby enhancing 
TGF-β/SMAD-induced EMT [161]. Intriguingly, 
another research showed that HERC3 ubiquitinates 
and degrades EIF5A2, thereby inhibiting the EMT 
induced by the EIF5A2/TGF-β/Smad2/3 signaling 
pathway in CRC [162]. These two opposite results 
further demonstrate the complexity and heterogeneity 
of tumor cell signal regulation. Other E3 ligases, 
including MDM2 [163], RNF61 [164], RNF111 [165, 
166], and TTC3 [167], enhance TGF-β signaling and 
EMT by stabilizing receptors or facilitating signal 
transduction.  

The regulatory balance is further influenced by 
DUBs, which remove ubiquitination levels to 
modulate TGF-β/SMAD signaling pathways (Table 
2). For example, USP1 stabilizes AK1 to promote 
TGF-β-induced EMT in TNBC cells [168]. USP4 
stabilizes TβRI by removing the ubiquitination, 
thereby accelerating TGF-β1-induced EMT and 
contributing to renal interstitial fibrosis and HCC 
[169, 170]. Moreover, USP10 and USP17 stabilized 
SMAD4 through their deubiquitinase activity, thereby 
enhancing TGF-β SMAD-dependent signaling and 
promoting EMT in OS and HCC [171, 172]. 
Specifically, USP19 exhibits isoform-dependent 
functions in regulating TGF-β signaling and EMT. In 
breast cancer (BC) models, the cytoplasmic isoform 
USP19 stabilizes both the TβRI and TβRII to enhance 
TGF-β-induced EMT and cell migration, whereas the 
endoplasmic reticulum-localized isoform USP19 
inhibits EMT by reducing TβRI surface expression 
[173]. Other DUBs, such as USP2a [174], USP3 [175], 
USP8 [176], and USP11[177], drive TGF-β-induced 
EMT by stabilizing key TGF-β receptors. Conversely, 
USP26 inhibits this pathway by deubiquitinating and 
stabilizing SMAD7, preventing formation of the 
SMAD2/3-TβRI complex and suppressing 
TGF-β-induced migration and invasion in 
glioblastoma (GBM) [178]. Collectively, this intricate 
interplay of ubiquitination and deubiquitination 
mechanisms precisely regulates TGF-β-mediated 
EMT. 

Wnt/β-catenin signaling regulation 

The Wnt/β-catenin signaling pathway plays a 
pivotal role in regulating EMT, facilitating the shift 

from epithelial to mesenchymal characteristics during 
processes such as cancer metastasis [179, 180]. 
Ubiquitination modulates the Wnt/β-catenin 
signaling pathway, thereby regulating EMT (Table 1). 
Signal initiation occurs through the binding of Wnt 
ligands to Frizzled (FZD) receptors and LRP5/6 
co-receptors at the cell surface, which stabilizes 
β-catenin by inhibiting its degradation complex and 
preventing ubiquitination-mediated proteasomal 
targeting [181]. Specific E3 ubiquitin ligases such as 
RNF43/ZNRF3 negatively regulate Wnt signaling by 
promoting FZD receptor ubiquitination and 
degradation, thereby suppressing EMT [182]. 
Furthermore, RNF43 inhibits Wnt/β-catenin signaling 
by downregulating β-catenin, thereby enhancing EMT 
in TNBC cells [183]. Other E3s like β-TrCP [184], 
FBXO11 [185], SIAH1-SIP-Skp1 complex [186], and 
NEDD4L [187] can also induce ubiquitination and 
degradation of β-catenin to inhibit Wnt/β-catenin 
signaling and negatively regulate EMT. Conversely, 
TNF receptor-associated factor 6 (TRAF6) activates 
β-catenin signaling and EMT by mediating 
ubiquitination and degradation of GSK3β [188]. 
However, another study showed that TRAF6 
paradoxically inhibits the Wnt pathway by promoting 
the autophagic degradation of β-catenin, thereby 
suppressing EMT in CRC [189]. Other E3s like 
TRIM46 promote Wnt/β-catenin signaling by 
degrading Axin1 to promote hypoxia-induced EMT in 
HK2 cells [190]. Similarly, TRIM15 [191], TRIM28 
[192], and RNF8 [193] can also activate Wnt/β-catenin 
signaling and EMT by stabilizing β-catenin.  

Furthermore, DUBs regulate EMT by removing 
ubiquitin chains to stabilize key components of 
Wnt/β-catenin signaling (Table 2). For instance, 
USP34 stabilizes Axin1 through deubiquitination to 
maintain the integrity of the β-catenin destruction 
complex, thereby reducing β-catenin levels and 
inhibiting EMT [194]. USP22 deubiquitinates and 
stabilizes ADAM9 to inhibit Wnt/β-catenin signaling 
and EMT in trophoblast cells [195]. Moreover, USP42 
suppresses EMT by stabilizing ZNRF3/RNF43, which 
promotes FZD receptor ubiquitination and 
degradation [182]. Conversely, USP5 stabilizes 
β-catenin by removing ubiquitin, driving 
Wnt/β-catenin signaling-induced EMT [196]. 
Additionally, other DUBs like USP7 [197-199], USP13 
[200], USP15 [201], USP25 [202], USP36 [203], and 
OTUB2 [204] similarly promote the stabilization of 
β-catenin or other elements, enhancing Wnt/ 
β-catenin signaling to facilitate EMT. Collectively, 
ubiquitination dynamics serve as a critical molecular 
switch governing the activity of the Wnt/β-catenin 
pathway and thereby modulating EMT. 
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Notch signaling regulation 

The Notch signaling pathway, an evolutionarily 
conserved system of intercellular communication, 
governs diverse cellular processes including 
differentiation, proliferation, apoptosis, and stem cell 
self-renewal [205]. Substantial evidence demonstrates 
that Notch signaling modulates EMT through direct 
transcriptional regulation and intricate crosstalk with 
pathways such as TGF-β and Wnt/β-catenin [52]. E3 
ligases critically regulate this process by 
substrate-specific ubiquitination of Notch signaling 
components, thereby determining their stability, 
subcellular localization, and signaling output (Table 1 
and Table 2). For instance, Deltex E3 ubiquitin ligase 3 
(DTX3) and WW domain containing E3 ubiquitin 
protein ligase 2 (WWP2) bind to Notch intracellular 
domain (NICD), promoting its ubiquitination and 
degradation to suppress Notch-induced EMT [206, 
207]. Conversely, USP28 stabilizes NICD to activate 
Notch-induced EMT [208]. Furthermore, FBXW7 
ubiquitinates and degrades Notch1 to suppress Notch 
signaling-induced EMT [209], while E3 ligase MIB1 
and TRIM67 promote EMT and cell invasion in 
NSCLC by positively regulating the Notch signaling 
[210, 211]. Under Hypoxia, NICD overexpression 
causes degradation of ataxin-1 (ATXN1) by MDM2, 
thereby enhancing Snail expression to induce EMT in 
cervical cancer cells [212]. Other mechanisms involve 
E3 ligases such as TRIM59 that stabilize 
recombination signal binding protein for 
immunoglobulin kappa J region (RBPJ) to activate 
Notch signaling to induce EMT and metastasis [213].  

Hypoxia-induced signaling regulation 

Hypoxia, a hallmark of solid tumors, critically 
promotes EMT to enhance cancer cell migration and 
invasion [214, 215]. This induction is primarily 
mediated by hypoxia-inducible factors (HIFs), a 
member of key TFs activated under low oxygen 
conditions [215]. HIFs, particularly HIF-1α, directly 
regulate the expression of EMT-related genes, 
including Snail, Slug, ZEB1/2, and Twist1/2 [216, 
217]. This regulation occurs through HIF-1α binding 
to hypoxia response elements in the promoter regions 
of these genes, driving their expression and 
promoting EMT. Furthermore, Multiple signaling 
pathways, including TGF-β, Wnt/β-catenin, 
PI3K/AKT/mTOR, and Notch, are modulated by 
hypoxia to further induce EMT [218-221]. The E3 
ligase von Hippel-Lindau (VHL) is a crucial tumor 
inhibition factor, which plays a key role in 
Hypoxia-induced EMT by ubiquitinating and 
degrading HIFs [222, 223]. VHL knockdown in ccRCC 
leads to HIF-1α/2α accumulation, which upregulates 
N-cadherin and vimentin while suppressing 

E-cadherin, ultimately facilitating tumor invasion 
[224]. Moreover, deubiquitylase ovarian tumor 
domain-containing 6B (OTUD6B) stabilizes VHL to 
suppress HIF-1α/2α-mediated EMT and metastasis in 
HCC and ccRCC [225, 226]. Other E3 ligases like 
Smurf2 and NEDD4L also regulate HIF-1α stability to 
constrain EMT [187, 227]. In contrast, E3 ligase UBE3B 
stabilizes HIF-2α by K63-linked polyubiquitin chains 
to promote lung metastasis [228]. Acute hypoxia 
induces acetylation of STIP1 homology and U-box 
containing protein 1 (Stub1), which promotes 
deubiquitinate of HIF-2α and inhibits EMT-associated 
vascular remodeling [229]. Additional DUBs like 
USP7 [230] and USP9X [231] enhance HIF-1α or 
HIF-2α signaling by counteracting ubiquitination, 
thereby indirectly influencing the expression of 
EMT-TFs (Table 1 and Table 2).  

Hh signaling regulation 

Hh signaling pathway is an evolutionarily 
conserved mechanism involving key components 
such as Patched (Ptc), Smoothened (Smo), and 
Glioblastoma-associated oncogene homolog (Gli) 
[232]. It plays a significant role in EMT by 
upregulating EMT-TFs, which are critical for cancer 
metastasis and chemoresistance [233]. Gli1 acts as a 
primary effector with its aberrant activity linked to 
the Hh-dependent induction of key EMT regulators, 
including Snail, Slug, and Twist [234]. The stability of 
Gli, Ptc, and Smo is regulated by ubiquitination, 
which becomes a crucial regulatory mechanism in the 
Hh signaling pathway [235]. For instance, novel E3 
ligases like Btbd9 and Kctd3 positively regulate Hh 
signaling [236], while Smurf1 and Smurf2 suppress 
the Hh/Gli signaling pathway by ubiquitinating and 
degrading Gli1 via K48-linked polyubiquitination 
[237]. Despite numerous studies showing that E3 
ligases can regulate the Hh signaling by regulating 
Gli, E3 ligases in the Hh-mediated EMT process 
remain limited. DUBs like USP37 enhance Gli1 
stability and activate Hh signaling by 
deubiquitinating, facilitating EMT-induced metastasis 
and chemoresistance in BC cells [238]. Similarly, USP5 
and USP7 promote Hh signaling by stabilizing Gli1 
through deubiquitination [239, 240], and 
UCHL5/UCH37 stabilizes Smo to enhance Hh 
signaling [241]. However, whether they are involved 
in regulating EMT in tumors requires further 
investigation. Consequently, the dysregulation of 
ubiquitination in the Hh pathway is closely associated 
with EMT and cancer progression. Targeting 
ubiquitination-related enzymes may offer new 
therapeutic strategies for Hh signal-driven EMT and 
metastasis. 
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Ubiquitination-regulated EMT in cancer 
metastasis 

EMT functions as a key driver of tumor 
metastasis, a complex biological process finely 
controlled by ubiquitination and deubiquitination 
[50]. Dysregulation of EMT boosts cancer spread by 
enhancing cell migration, invasion, and resistance to 
apoptosis [242]. This section aims to explore the role 
of E3 ligases or DUBs-regulated EMT in tumor 
metastasis and analyze their potential promoting 
mechanisms (Table 3). 

Stabilizing Snail/Slug and promoting 
metastasis 

Snail and Slug critically regulate tumor 
metastasis by inducing EMT, a process governed by 
their modulation of genes involved in cell adhesion, 
polarity, and cytoskeletal dynamics [243]. Under 
normal conditions, the levels of Snail or Slug are 
maintained at low steady-state concentrations 
through proteasomal degradation, ensuring precise 
control of EMT progression [243]. However, 

dysregulation of ubiquitination often leads to the 
stabilization of the Snail/Slug proteins, thereby 
facilitating EMT and metastatic dissemination (Table 
3) [244]. For instance, the E3 ligase Pellino-1 is 
abnormally highly expressed in LUAD and TNBC, 
which often leads to metastasis and a lower survival 
rate for patients. Mechanistically, the highly 
expressed Pellino-1 stabilizes Snail or Slug by K63 
ubiquitination to promote EMT and metastasis in vitro 
and in vivo [93, 94]. Similarly, RNF8 also stabilizes 
Slug via K63 ubiquitination, thereby driving EMT and 
metastasis in lung cancer cells in vivo [95]. 
Furthermore, A20 promotes the monoubiquitination 
of Snail, thereby facilitating TGF-β1-induced EMT 
and metastasis in BC cells in vivo [96]. Since most E3 
ligases degrade Snail or Slug through the K48-linked 
ubiquitin chain, they inhibit the EMT process and 
tumor metastasis. Therefore, multiple E3 ligases are 
expressed at low levels in tumors, which facilitates the 
EMT-induced metastasis. Conversely, DUBs play a 
crucial role in promoting EMT-induced cancer 
metastasis.  

 

Table 3. E3 and DUBs promote metastasis by regulating EMT 

Target E3/DUBs Regulatory mechanism  Ref. 
Snail/Slug Pellino-1 E3 Pellino-1 stabilizes Snail and Slug by K63-linked ubiquitin chains, facilitating lung tumorigenesis and metastasis in vitro 

and in vivo. 
[93, 94] 

Slug RNF8 E3 RNF8 stabilizes Slug by K63-linked ubiquitin chains, promoting EMT and migration in LC cells in vivo. [95] 
Snail A20 E3 A20 stabilizes Snail by monoubiquitination, thereby facilitating TGF-β1-induced EMT and metastasis in BC cells in vivo. [96] 
Snail USP1 DUB USP1 promotes the metastasis of OC cells by stabilizing Snail in vitro and in vivo. [97] 
Snail USP2 DUB USP2 promotes the proliferation and metastasis of choroidal melanoma cells by stabilizing the Snail protein. [99] 
Snail USP4 DUB USP4 stabilizes Snail via deubiquitination, driving EMT and metastasis in HCC in vitro and in vivo. [101] 
Snail/Slug USP5 DUB USP5 stabilizes Slug, promoting EMT and metastasis in bladder cancer and HCC in vitro and in vivo. 

USP5 stabilizes Snail, promoting EMT and metastasis in CRC cells in vitro and in vivo. 
[21, 122, 
245] 

Snail USP9X DUB USP9X stabilizes Snail, promoting the migration, invasion, and metastasis of TNBC cells in vitro and in vivo. [102] 
Snail/Slug USP10 DUB USP10 promotes EMT and the metastasis of BC cells by stabilizing Snail and Slug in vitro and in vivo. [103, 

123] 
Snail USP11 DUB USP11 is significantly upregulated in OC tissues and promotes invasion and metastasis by deubiquitinating Snail in vitro 

and in vivo. 
[104] 

Snail USP13 DUB USP13 is highly expressed in GC and promotes EMT and metastasis by stabilizing Snail in vitro and in vivo. [105] 
Snail USP17 DUB USP17 promotes the migration and invasion of OSCC cells by stabilizing Snail in vitro. [106] 
Snail USP18 DUB USP18 is highly expressed in CRC tissues and promotes proliferation, migration and invasion by stabilizing Snail in vitro. [107] 
Slug USP20 DUB USP20 positively regulates Slug to promote BC metastasis and invasion in vitro and in vivo. [124] 
Snail USP26 DUB USP26 is highly expressed in ESCC and stabilizes Snail to promote the migration and invasion of ESCC cells in vitro. [108] 
Snail USP27X DUB USP27X promotes the migration, invasion of BC cells by stabilizing Snail in vitro. [109] 
Snail USP28 DUB USP28 promotes BC metastasis by stabilizing Snail through deubiquitination in vitro and in vivo. [110] 
Snail USP29 DUB USP29 enhances the interaction between Snail and SCP1, stabilizing Snail and promoting the migration of GC cells in 

vitro and in vivo. 
[111] 

Snail USP30 DUB USP30 stabilizes Snail to facilitate the EMT and metastasis of BC cells in vitro and in vivo. [112] 
Snail USP35 DUB USP35 stabilizes Snail to facilitate the EMT and metastasis of GC tissues in vitro and in vivo. [113] 
Snail USP37 DUB USP37 stabilizes Snail via deubiquitination, promoting GC and LUAD cells metastasis in vitro and in vivo. [114, 

249]  
Snail USP41 DUB USP41 increases the migration of breast cancer cells by stabilizing Snail, associated with poor prognosis in BC patients in 

vitro and in vivo. 
[115] 

Snail USP47 DUB USP47 stabilizes Snail to facilitate EMT and in CRC and BC cells in vitro and in vivo. [116, 
246] 

Snail DUB3 DUB DUB3 stabilizes Snail to promote the EMT and metastasis of HCC and BC cells in vitro and in vivo. [248] 
Snail OTUB1 DUB OTUB1 is highly expressed in ESCC, which stabilizes Snail to promote ESCC metastasis in vitro and in vivo. [117] 
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Target E3/DUBs Regulatory mechanism  Ref. 
Snail OTUD4 DUB OTUD4 stabilizes Snail, which is identified as a novel therapeutic target for melanoma and BC metastasis in vitro and in 

vivo. 
[118, 
247] 

Snail JOSD1 DUB JOSD1 is significantly overexpressed in LUAD, stabilizing Snail to promote EMT and metastasis in vitro. [120] 
Snail PSMD14 DUB PSMD14 stabilizes Snail to promote metastasis in ESCC in vitro and in vivo. [121] 
Snail EIF3H DUB EIF3H interacts with and stabilizes Snail through deubiquitination, promoting EMT in ESCC in vitro and in vivo. [119] 
ZEB1 USP18 DUB USP18 stabilizes ZEB1 through deubiquitination and enhances EMT and metastasis in ESCC in vitro and in vivo. [136] 
ZEB1 USP21 DUB USP21 stabilizes ZEB1 to promote the EMT and metastasis of CRC in vitro, thereby contributing to poor prognosis. [137]  
ZEB1 USP22 DUB USP22 stabilizes ZEB1 to enhance angiogenesis and EMT, thereby promoting the progression of OC in vitro. [133] 
ZEB1 USP39 DUB USP39 stabilizes ZEB1 through deubiquitination, enhancing the proliferation and migration abilities of MM and HCC in 

vitro and in vivo. 
[129, 
251]. 

ZEB1 USP43 DUB USP43 is highly expressed in colorectal cancer tissues. It stabilizes ZEB1 to promote the migration and invasion of CRC 
in vitro. 

[138] 

ZEB1 USP51 DUB USP51 plays an important role in the metastasis of GC, BC, and LUAD by stabilizing ZEB1 in vitro and in vivo. [134, 
252] 

ZEB1 BRCC3 DUB BRCC3 stabilizes ZEB1to promote EMT and metastasis in TNBC in vitro and in vivo. [139] 
Twist1 USP4 DUB USP4 stabilizes Twist1 to drive EMT-associated stemness and malignancy in LC in vitro and TNBC invasion, migration, 

and tumor metastasis in vitro and in vivo. 
[148, 
254] 

Twist1 USP13 DUB USP13 stabilizes Twist1 to drive EMT, which promotes BC metastasis to the lung in vitro and in vivo. [150] 
Twist1 USP18 DUB USP18 is highly expressed in GBM and promotes the migration and invasion of GBM cells by stabilizing Twist1 in vitro 

and in vivo. 
[151] 

Twist1 USP29 DUB USP29 promotes the malignant phenotypes in TNBC cells by deubiquitinating Twist1 in vitro and in vivo. [152] 
Twist1 USP51 DUB USP51 stabilizes Twist1 to drive EMT-associated stemness and malignancy in TNBC cells in vitro. [255] 
Twist1 RNF8 E3 RNF8 stabilizes Twist by K63-linked ubiquitin chains, promoting EMT, migration, and invasion in BC cells in vitro and in 

vivo. 
[146] 

Twist1 FBXO3 E3 FBXO3 stabilizes Twist1 by stabilizing USP4, enhancing BC cell migration and tumor metastasis in vitro and in vivo. [148] 
Twist1 RBX1 E3 RBX1 degrades FBXO45 to stabilize Twist1 and promotes the migration and invasion of TNBC both in vitro and in vivo. [147] 
TGF-β signaling 
SNIP1 RNF61 

(MKRN1) 
E3 RNF61 promotes TGF-β signaling by degrading SNIP1, facilitating EMT and metastasis in CRC in vitro and in vivo. [164] 

SMAD3 RNF111 E3 RNF111 activates TGF-β signaling by targeting SMAD3 to enhance Snail expression and promote NSCLC invasion and 
migration in vitro. 

[166] 

SMAD7 HERC3 E3 HERC3 induces SMAD7 degradation in an autolysosome-dependent manner, activating the TGF-β signaling and GBM 
cell invasion and tumor metastasis in vitro and in vivo. 

[161] 

SMAD2/3 MDM2 E3 MDM2 activates the Smad pathway to promote EMT during OC cell invasion and migration in vitro. [163] 
TAK1 USP1 DUB USP1/WDR48 enhances TGF-β-mediated EMT and TNBC cell migration by stabilizing TAK1 in vitro. [168] 
TβRI USP2a DUB USP2a activates TGF-β signaling by deubiquitinating TβRI, promoting metastasis in LC in vivo. [174] 
SUZ12 USP3 DUB USP3 enhances TGF-β1-induced EMT and metastasis of GC cells by destabilizing SUZ12 in vitro. [175] 
TβRI USP4 DUB USP4 interacts with and deubiquitinates βRI, promoting TGF-β signaling-induced EMT and metastasis in HCC in vitro 

and in vivo. 
[170] 

TβRII USP8 DUB USP8 stabilizes TβRII to promote TGF-β/SMAD-induced EMT, invasion, and metastasis in BC cells in vitro and in vivo. [176] 
SMAD4 USP10 DUB USP10 interacts with and stabilizes SMAD4 by removing Lys-48-linked ubiquitin chains, thereby promoting HCC 

metastasis in vitro and in vivo. 
[172]  

TβRII USP11 DUB USP11 stabilizes TβRII to activate the TGF-β signaling, promoting EMT and metastasis in BC in vitro and in vivo. [177] 
SMAD4 USP17 DUB USP17 stabilizes SMAD4 to activate the TGF-β signaling, thereby promoting EMT and OS cell migration and invasion in 

vitro. 
[171] 

TβRI USP19 DUB USP19-CY (cytoplasmic isoform) stabilizes TβRI and TβRII to enhance TGF-β-induced EMT and migration in BC in vitro. [173] 
Wnt/β-catenin signaling 
GSK3β/ 
β-catenin 

RNF8 E3 RNF8 inhibits GSK-3β and subsequently activates β-catenin signaling, promoting EMT and BC cell migration and tumor 
metastasis in vitro and in vivo 

[193] 

β-catenin TRIM15 E3 TRIM15 activates the Wnt/β-catenin signaling to promote EMT, driving ESCC cell migration, invasion, and tumor 
metastasis in vitro and in vivo.  

[191] 

β-catenin TRIM28 E3 TRIM28 activates the Wnt/β-catenin signaling to promote EMT, migration, and invasion of OC cells in vitro. [192] 
β-catenin USP5 DUB USP5 stabilizes β-catenin to activate the Wnt/β-catenin signaling, enhancing EMT and migration in NSCLC cells in vitro. [196] 
DDX3X, 
β-catenin 

USP7 DUB USP7 stabilizes β-catenin and DDX3X to activate Wnt/β-catenin signaling, promoting the metastasis of CRC and OS cells 
in vitro. 

[197, 
198] 

WISP1 USP13 DUB USP13 stabilizes WISP1 to activate the Wnt/β-catenin signaling, promoting ESCC cell migration and tumor metastasis in 
vitro and in vivo. 

[200] 

β-catenin USP15 DUB USP15 promotes the nuclear translocation of β-catenin and activates the Wnt/β-catenin signaling, enhancing the EMT 
and invasion in GC cells in vitro. 

[201] 

β-catenin USP25 DUB USP25 stabilizes β-catenin through interaction with TRIM21, activating β-catenin signaling-induced EMT and driving 
cell migration, invasion, and tumor metastasis in vitro and in vivo. 

[202] 

β-catenin OTUB2 DUB OTUB2 stabilizes β-catenin by suppressing TRAF6-mediated autophagy-dependent degradation, promoting 
Wnt/β-catenin signaling and driving EMT cell invasion and tumor metastasis in vitro and in vivo. 

[204] 
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DUBs inhibit the degradation of the Sanil protein 
mediated by the K48 ubiquitin chain, thereby 
promoting EMT and driving tumor metastasis (Table 
3). For instance, USP1 [97] and USP11 [104] stabilize 
Snail to promote the invasion and metastasis of OC 
cells in vitro and in vivo. In choroidal melanoma, USP2 
overexpression facilitates EMT migration and 
invasion by stabilizing Snail in vitro [99]. Furthermore, 
USP4 [101] and DUB3 [98] stabilize Snail and induce 
EMT, thereby promoting HCC cell migration, 
invasion, and tumor metastasis in vitro and in vivo. In 
bladder cancer and HCC, USP5 deubiquitinates and 
stabilizes Slug to induce EMT, facilitating cancer cell 
migration, invasion, and tumor metastasis in vitro and 
in vivo [122, 245]. Moreover, USP5 [21], USP18[107], 
and USP47 [116] suppress Snail degradation to induce 
EMT, thereby promoting CRC cell migration and 
tumor metastasis in vitro and in vivo. In BC, USP9X 
[102], USP10 [103], USP20 [124], USP27X [109], USP28 
[110], USP30 [112], USP41[115], USP47 [246], OTUD4 
[247], and DUB3 [248] are often abnormally highly 
expressed. Those DUBs stabilize Snail or Slug by 
removing ubiquitination, thereby increasing EMT and 
BC cell migration and tumor metastasis in vitro and in 
vivo. Moreover, OTUD4 also directly deubiquitinates 
and stabilizes Snail to promote melanoma cell 
migration and tumor metastasis in vitro and in vivo 
[118]. Similarly, USP13 [105], USP29 [111], USP35 
[113], and USP37 [249] stabilize Snail to repress 
E-cadherin, enhancing epithelial-mesenchymal 
plasticity and driving GC cell migration and tumor 
metastasis in vitro and in vivo. In oral squamous cell 
carcinoma cells (OSCC), USP17 promotes the stability 
of Snail, leading to migration and invasion involving 
EMT in vitro [106]. Furthermore, USP26 [108], 
PSMD14 [121], OTUB1 [117], and EIF3H [119] 
deubiquitinate and stabilize Snail, enhancing 
esophageal squamous cell carcinoma (ESCC) cell 
migration and tumor metastasis in vivo and in vitro. In 
LUAD, USP37 [114] and JOSD1 [120] deubiquitinate 
Snai1 to activate EMT, thereby promoting cell 
invasion and migration in vitro. Therefore, the 
abnormal expression of these DUBs in tumors is a key 
factor that promotes the stability of Snail and tumor 
metastasis.  

Stabilizing ZEB1 and promoting metastasis  
ZEB1 promotes cell migration and invasion by 

regulating cytoskeletal remodeling, cell-cell adhesion, 
and increasing the expression of vimentin [250]. 
Several DUBs stabilize ZEB proteins through 
deubiquitination, thereby enhancing EMT and tumor 
metastasis (Table 3). For instance, USP21 and USP43 
deubiquitinate and stabilize ZEB1 to induce EMT, 
enhancing cell migration and stemness in CRC in vitro 

[137, 138]. Similarly, USP18 stabilizes ZEB1 by 
deubiquitinating to facilitate ESCC cell migration and 
tumor metastasis in vitro and in vivo [136]. USP22 
stabilizes ZEB1 to induce angiogenesis and EMT, 
thereby promoting the invasion and migration of OC 
in vitro [133]. In HCC and multiple myeloma (MM) 
cells, USP39 stabilizes ZEB1 by deubiquitination to 
induce EMT, thereby promoting cell migration and 
tumor metastasis in vitro and in vivo zebrafish 
experiments [129, 251]. Similarly, USP51 stabilizes 
ZEB1 through deubiquitination, promoting metastatic 
dissemination in GC in vitro and in vivo [135]. Further 
research showed that CDK4/6 phosphorylation of 
USP51 is required for ZEB1-mediated metastasis in 
LUAD and BC in vitro and in vivo [134, 252]. 
Concurrently, BRCC3 stabilizes ZEB1 by 
deubiquitination to induce EMT, thereby promoting 
TNBC cell migration, invasion, and tumor metastasis 
in vitro and in vivo [139]. However, USP10 degrades 
ZEB1 by removing K27-linked ubiquitin chains, 
thereby suppressing CRC cell migration mediated by 
ZEB1 in vitro [140]. Conversely, ERK-mediated 
phosphorylation of USP10 at Ser236 impairs its 
interaction with ZEB1, thereby stabilizing ZEB1 and 
promoting CRC metastasis in vivo [140]. Together, 
these mechanisms illustrate how the interplay 
between E3 ligases and DUBs regulates ZEB stability 
to drive cancer progression.  

Stabilizing Twist1 and promoting metastasis 
Twist1 represses E-cadherin transcription, 

promoting tumor cell migration, invasion, and 
metastasis [243]. Clinically, elevated Twist1 correlates 
with increased lymph node metastasis, distant 
metastasis, and advanced tumor stage across multiple 
cancers [253]. The protein stability of Twist1 is 
dynamically regulated by E3s and DUBs, which 
promote EMT and tumor metastasis by stabilizing 
Twist1(Table 3). For instance, USP13 directly interacts 
with Twist1 and cleaves FBXL14-induced K48-linked 
polyubiquitin chains, increasing Twist1 protein levels 
and facilitating BC cell migration and tumor 
metastasis in vitro and in vivo [150]. In GBM, USP18 
deubiquitinates and stabilizes Twist1, thereby 
inducing EMT and promoting cell migration and 
tumor metastasis in vitro and in vivo [151]. Similarly, 
USP29 stabilizes Twist1 through deubiquitination, 
thereby driving malignant phenotypes in TNBC in 
vitro and in vivo [152]. Furthermore, specific E3 ligases 
can also stabilize Twist1 to facilitate metastasis. For 
instance, RNF8 can stabilize Twist1 to induce EMT 
through K63-linked ubiquitin chains, thereby 
enhancing BC cell migration, invasion, and tumor 
metastasis in vitro and in vivo [146]. FBXO3 disrupts 
the DNPEP-mediated degradation of USP4, 
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stabilizing Twist1 and promoting BC cell migration 
and tumor metastasis in vitro and in vivo [148]. RBX1 
ubiquitinates and degrades FBXO45, consequently 
stabilizing Twist1to drive EMT and facilitating TNBC 
cell invasion, migration, and tumor metastasis in vitro 
and in vivo [147]. Additionally, USP4 [254] and USP51 
[255] stabilize Twist1 polyubiquitination, enhancing 
EMT-associated stemness and malignancy in lung 
cancer in vitro. This regulatory network highlights 
Twist1 as a critical convergence point for 
post-translational modifications that orchestrate EMT 
and metastatic progression. 

Activating TGF-β signaling to drive 
EMT-induced metastasis 

TGF-β-induced EMT is a pivotal factor for tumor 
metastasis, involving multiple EMT-TFs and EMT 
signaling pathways [256]. E3 ligases and DUBs act as 
key regulators by modulating the stability and 
activity of TGF-β pathway components, thereby 
influencing EMT and tumor metastasis (Table 3). For 
instance, E3 ligase RNF61 degrades Smad 
nuclear-interacting protein 1 (SNIP1) to activate 
TGF-β-mediated EMT, promoting CRC cell invasion 
and tumor metastasis in vitro and in vivo [164]. 
Furthermore, HERC3 promotes the autophagic 
degradation of Smad7 through ubiquitination, 
thereby activating the TGF-β signaling and driving 
EMT and GBM cell invasion and tumor metastasis in 
vitro and in vivo [161]. In OC, MDM2 promotes EMT 
by activating the TGF-β-Smads-Snail/Slug pathway, 
enhancing OC cell invasion and migration in vitro 
[163]. Similarly, RNF111 is highly expressed in the 
high-metastatic NSCLC cell line 95D, which activates 
TGF-β signaling-induced EMT to enhance NSCLC cell 
invasion and migration in vitro [166]. Furthermore, 
DUBs stabilize core TGF-β signaling proteins by 
removing ubiquitin chains, thereby promoting EMT 
and tumor metastasis. For instance, the USP1/WDR48 
complex stabilizes TAK1 through deubiquitination to 
enhance EMT and cell migration in TNBC in vitro 
[168]. In lung cancer, USP2a stabilizes TβRI by 
removing K33-linked polyubiquitin chains to promote 
nuclear translocation of SMAD2/3, activating 
TGF-β-induced EMT and metastasis in vivo [174]. 
Similarly, USP4 and USP10 activate the TGF-β 
signaling through deubiquitinating TβRI and Smad4, 
thereby promoting EMT-induced cell migration, 
invasion, and metastasis of HCC in vitro and in vivo 
[170, 172]. Other mechanisms involve USP3 interacts 
with and stabilizes SUZ12 by deubiquitination, 
promoting TGF-β1-induced EMT and cell migration 
and invasion in GC in vitro [175]. Furthermore, USP8 
[176] and USP11 [177] enhance TGF-β/SMAD 
signaling by deubiquitinating and stabilizing TβRII, 

increasing plasma membrane expression and 
promoting EMT, invasion, and metastasis in BC cells 
in vitro and in vivo. USP17 promotes TGF-β-induced 
EMT by stabilizing SMAD4, thereby promoting OS 
cell migration and invasion in vitro [171]. Specifically, 
the cytoplasmic isoform USP19 expression is higher in 
BC tissues and is correlated with poor prognosis. 
Mechanistically, cytoplasmic isoform USP19 stabilizes 
TβRI and TβRII to enhance TGF-β-induced EMT and 
BC cell migration and extravasation in vitro [173]. 
Conversely, endoplasmic reticulum-localized isoform 
USP19 inhibits BC cell migration [173]. Therefore, the 
ubiquitination-related factors play a significant role in 
promoting tumor metastasis through 
TGF-β-mediated EMT. 

Activating Wnt/β-catenin signaling to drive 
EMT-induced metastasis 

The dysregulation of Wnt/β-catenin signaling 
promotes EMT and tumor metastasis across various 
malignancies through ubiquitination and 
deubiquitination events that regulate β-catenin 
stability (Table 3) [257, 258]. Emerging evidence 
showed that RNF8 is overexpressed in highly 
metastatic BC cell lines. It activates β-catenin-induced 
EMT by inactivating GSK-3β, thereby promoting BC 
cell migration and tumor metastasis in vitro and in vivo 
[193]. Similarly, the non-SMC concentrate I complex 
subunit (NCAPG) stabilizes β-catenin through 
competitive binding with SIP to inhibit SIAH1 
activity, promoting β-catenin-induced EMT and HCC 
cell migration and tumor metastasis in vitro and in vivo 
[186]. Furthermore, elevated expression of TRIM15 in 
ESCC tissues and cell lines activates 
Wnt/β-catenin-induced EMT, leading to cell 
migration, invasion, and tumor metastasis in vitro and 
in vivo [191]. Additionally, TRIM28 has been 
implicated in OC cell metastasis in vitro, as its 
knockdown significantly attenuates Wnt/β-catenin 
signaling and suppresses EMT processes [192].  

DUBs can stabilize these key components 
through deubiquitination, thereby enhancing 
Wnt/β-catenin signaling and tumor metastasis. For 
instance, USP5 stabilizes β-catenin to activate the 
Wnt/β‑catenin and EMT, thereby promoting NSCLC 
cell migration and invasion in vitro [196]. Similarly, 
USP7 activates Wnt/β‑catenin-induced EMT by 
stabilizing β-catenin, thereby enhancing OS cell 
migration and invasion in vitro [198]. Furthermore, in 
CRC, USP7 augments Wnt/β-catenin signaling by 
stabilizing DDX3X, promoting EMT and cell 
migration in vitro [197]. Similarly, USP13 stabilizes 
WISP1 to promote the Wnt/β-catenin-induced EMT, 
driving ESCC cell migration and tumor metastasis in 
vitro and in vivo [200]. USP15-mediated β-catenin 
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stabilization facilitates EMT and GC cell invasion in 
vitro [201]. In HCC, the USP25-TRIM21 axis activates 
β-catenin signaling-induced EMT and drives cell 
migration, invasion, and tumor metastasis in vitro and 
in vivo [202]. Furthermore, OTUB2 stabilizes β-catenin 
by suppressing TRAF6-mediated autophagy- 
dependent degradation and activating 
Wnt/β-catenin-induced EMT, thereby driving 
intrahepatic cholangiocarcinoma (iCCA) cell invasion 
and tumor metastasis in vitro and in vivo [204]. These 
findings demonstrate that ubiquitination-mediated 
regulation of Wnt/β-catenin signaling constitutes a 
critical mechanistic node controlling EMT and 
metastasis across diverse malignancies.  

Ubiquitination-regulated EMT in 
chemoresistance and strategies  
Ubiquitination-regulated EMT in 
chemoresistance  

Chemotherapy resistance is a major challenge in 
cancer treatment [259]. The resistance mechanism 
often involves EMT activation, which causes cancer 
cells to gain stem cell-like qualities, increased 
migration ability, and decreased sensitivity to 
chemotherapy [260]. Emerging evidence shows that 
the development of chemoresistance in cancer therapy 
is frequently connected to ubiquitination-regulated 
EMT [50]. In this section, we aim to explore the role of 
E3 ligases or DUBs-regulated EMT in tumor 
chemoresistance and highlight that E3 ligases or 
DUBs inhibitors are crucial for overcoming tumor 
metastasis and chemoresistance (Table 4) [232-234].  

Cisplatin 

Platinum-based chemotherapy is a primary 
treatment for solid tumors, but its efficacy is 
frequently undermined by the development of drug 
resistance [261]. Cisplatin, a DNA-damaging agent 
and widely utilized in NSCLC, often encounters 
resistance mediated by ubiquitin-regulated EMT 
(Table 4) [262]. For instance, the lipid metabolism 
enzyme carnitine palmitoyltransferase 1C (CPT1C), 
highly expressed in NSCLC cells, contributes to 
cisplatin resistance by inducing EMT in vitro [263]. 
Mechanistically, cisplatin treatment induces the 
degradation of the E3 ligase NEDD4L, leading to 
enhanced CPT1C stability and subsequent 
EMT-driven cisplatin resistance [263]. Intriguingly, 
NEDD4 exhibits context-dependent roles. In 
cisplatin-resistant nasopharyngeal carcinoma (NPC) 
cells, NEDD4 expression contributes to EMT, and its 

downregulation reverses resistance in vitro [264]. 
Similarly, the E3 ligase FBXW7 suppresses EMT and 
chemoresistance in NSCLC by degrading Snail, 
whereas reduced FBXW7 expression in patient tissues 
correlates with poorer treatment response in vitro 
[265]. Conversely, the downregulation of cyclin D3 in 
cisplatin-resistant LUAD cells impairs PARK2- 
mediated vimentin degradation, stabilizing vimentin 
and promoting EMT and chemoresistance in vitro and 
in vivo [266]. Other E3 ligases contribute to EMT- 
induced resistance: TRAF6 mediates the ubiquitina-
tion and degradation of GSK3β, activating β-catenin 
signaling to promote EMT and cisplatin resistance in 
vitro and in vivo [188]. Furthermore, Hakai stabilizes 
phosphorylated AKT to enhance EMT, leading to 
cisplatin resistance in NSCLC in vitro [267].  

DUBs significantly facilitate EMT to promote 
cisplatin resistance in various cancers. For instance, 
USP1 stabilizes Snail through deubiquitination after 
platinum-based treatments, thereby inducing EMT 
and conferring resistance in OC cells in vitro [97]. 
Similarly, USP9X enhances Snail stability by 
removing K48-linked ubiquitin chains, contributing to 
cisplatin and doxorubicin (Dox) resistance in TNBC in 
vitro and in vivo [102], while TGF-β-induced USP27X 
stabilizes Snail and activates cancer-associated 
fibroblasts, reducing cisplatin sensitivity in TNBC in 
vitro and in vivo [109]. Additionally, PSMD14 
stabilizes Snail by deubiquitination to drive EMT and 
diminish cisplatin efficacy in ESCC cells in vitro and in 
vivo [121, 268]. Notably, key EMT-TFs like ZEB1 and 
Twist directly promote cisplatin resistance by 
enabling EMT-linked chemoresistance. For instance, 
USP51 stabilizes ZEB1 to promote A549 cells' cisplatin 
resistance in vitro [269], and USP29 stabilizes Twist1 to 
enhance EMT, metastasis, and cisplatin resistance in 
TNBC in vitro and in vivo [152]. DUBs also regulate 
TGF-β signaling components, such as USP32 stabilizes 
SMAD2 to activate TGF-β-mediated proliferation and 
migration, augmenting cisplatin resistance in GC in 
vitro and in vivo [270]. In LUAD, USP7 suppresses 
c-Myc degradation to promote EMT and cisplatin 
resistance in vitro [271], and USP22 stabilizes c-Myc 
and ALDH1A3 to facilitate EMT and resistance in 
TNBC and lung cancer in vitro and in vivo [272, 273]. 
Furthermore, USP37 stabilizes Gli-1 to activate Hh 
signaling, driving EMT and cisplatin resistance in BC 
cells in vitro and in vivo [238]. Collectively, DUBs and 
E3 ligases converge on EMT regulation, establishing 
them as key mediators of cisplatin resistance and 
promising therapeutic targets. 
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Table 4. E3 and DUBs promote resistance by regulating EMT  

Drugs Targeting Drug resistance regulatory mechanism Cancers Ref 
Cisplatin NEDD4L Cisplatin induces a decrease in NEDD4, stabilizing CPT1CAK to drive EMT and cisplatin resistance in vitro. NSCLC [263] 

FBXW7 Lower expression of FBXW7 stabilizes Snail, driving EMT and cisplatin resistance in vitro. NSCLC [265] 
PARK2  Cisplatin inhibits PARK2-mediated vimentin, promoting EMT and cisplatin resistance in vitro and in vivo. LUAD [266] 
TRAF6 TRAF6 degrades GSK3β, thereby activating β-catenin signaling and promoting EMT and cisplatin resistance 

in vitro and in vivo. 
NPC [188] 

Hakai Stabilizes p-AKT to enhance EMT and cisplatin resistance in vitro. NSCLC [267] 
USP1 USP1 stabilizes Snail to enhance EMT and cisplatin resistance in vitro. OC  [97] 
USP7 USP7 stabilizes c-Myc to enhance EMT and cisplatin resistance in vitro. LUAD [271] 
USP9X USP9X stabilizes Snail to enhance EMT and cisplatin resistance in vitro and in vivo. TNBC [102] 
USP22 USP22 stabilizes c-Myc and ALDH1A3 to enhance EMT and cisplatin resistance in vitro and in vivo. TNBC, 

LUAD 
[272, 273] 

USP27X USP27X stabilizes Snail to enhance EMT and cisplatin resistance in vitro and in vivo. TNBC [109] 
USP29 USP29 stabilizes Twist1 to enhance EMT and cisplatin resistance in vitro and in vivo. TNBC [152] 
USP32 USP32 stabilizes SMAD2 to enhance EMT and cisplatin resistance in vitro and in vivo. GC [270] 
USP37 USP37 stabilizes Gli-1 to enhance EMT and cisplatin resistance in vitro and in vivo. BC [238] 
USP51 USP51 stabilizes ZEB1 to enhance EMT and cisplatin resistance in vitro. LC [269] 
PSMD14 PSMD14 stabilizes Snail to enhance EMT and cisplatin resistance in vitro and in vivo. ESCC [121, 268] 

Oxaliplatin OTUB2 OTUB2 stabilizes SP1 and GINS1 to enhance EMT and Oxaliplatin resistance in vitro and in vivo. CRC [275] 
FBXW7 Lower expression of FBXW7 stabilizes ZEB2, driving EMT and Oxaliplatin resistance in vitro and in vivo. CRC [132] 

Doxorubicin RNF8 RNF8 stabilizes Twist via K63-linked polyubiquitin chains, driving EMT and Dox resistance in vivo.  TNBC [146 
SIAH1 Dox induces SIAH1 decrease, stabilizing ZEB1 to drive EMT and Dox resistance in vitro. OS, HCC [278, 279] 
USP9X USP9X stabilizes Snail to enhance EMT and Dox resistance. TNBC [109] 
USP14 USP14 modulates Wnt signaling to enhance Dox resistance in vitro. MM  [282] 
USP29 USP29 stabilizes Snail to enhance EMT and Dox resistance in vitro and in vivo. NSCLC [283] 
USP45 USP29 stabilizes MYC to enhance EMT and Dox resistance in vivo. CC [284] 

Gemcitabine UBR5 UBR5 degrades O-GlcNAcase (OGA), inducing EMT and GEM resistance in vitro and in vivo. PC [286] 
 TRIM59 TRIM59 stabilizes RBPJ, activating Notch signaling to induce EMT and drive GEM in vitro and in vivo. PC [213] 
 RNF126 RNF126 ubiquitinates and degrades PTEN, activating the AKT/GSK-3β/β-catenin pathway to induce EMT 

and drive GEM resistance in vitro and in vivo. 
PC  [287] 

 FBW7 MiR-223 downregulates FBW7 to activate Notch-1-induced EMT and GEM resistance in vitro. PC [209] 
 Smurf2 miR-15b downregulates Smurf2 to stabilize Smad2/3, activating the TGF-β-induced EMT and driving 

resistance in vitro. 
PC [289] 

Paclitaxel USP29 USP29 stabilizes Snail to enhance EMT and paclitaxel resistance in vitro  NSCLC [283] 
USP30 USP30 stabilizes Snail to enhance EMT and paclitaxel resistance in vitro and in vivo.  BC  [112] 

5-Fu FBXW7 Lower expression of FBXW7 stabilizes ZEB2, driving EMT and Oxaliplatin resistance in vitro and in vivo. CRC [132] 
Sunitinib TRIM21 TRIM21 stabilizes AXL to enhance sunitinib resistance in vitro and in vivo. KIRC [295] 
Sorafenib  RNF8 RNF8 upregulates N-cadherin and Snail to enhance sorafenib resistance in vitro. HCC [294] 
Lenvatinib RNF8 RNF8 upregulates N-cadherin and Snail to enhance lenvatinib resistance in vitro. HCC [294] 
Temozolomide HERC3 HERC3 degrades SMAD7 to activate TGF-β signaling, inducing EMT and autophagy, and TMZ resistance in 

vitro and in vivo 
GBM [161] 

Vemurafenib OTUD4 OTUD4 stabilizes Snail to enhance EMT and Vemurafenib resistance in vitro. MEL [118] 
PLX-4720 OTUD4 OTUD4 stabilizes Snail to enhance EMT and PLX-4720 resistance in vitro.  MEL [118] 

 
 

Oxaliplatin  

Oxaliplatin is a standard chemotherapeutic 
agent primarily employed in the treatment of CRC 
[274]. The resistance of Oxaliplatin is largely through 
dysregulation of ubiquitin-mediated pathways 
involving EMT, which play a critical role in tumor 
metastasis and chemoresistance (Table 4). For 
instance, OTUB2 stabilizes transcription factor SP1 by 
removing K48-linked ubiquitin ligases, enhancing 
EMT and oxaliplatin resistance in CRC in vitro and in 
vivo [275]. Furthermore, FBXW7 suppresses EMT and 
chemoresistance in NSCLC by degrading ZEB2, while 
FBXW7 deletion promotes EMT by enhancing the 
stabilization of ZEB2, thereby promoting oxaliplatin 

and 5-fluorouracil (5-FU) resistance in CRC in vitro, ex 
vivo, and in vivo [132]. Therefore, the dysregulation of 
ubiquitination leads to EMT, which significantly 
promotes the occurrence of Oxaliplatin resistance. 

Doxorubicin 

Dox, an anthracycline antibiotic, is widely used 
in cancer chemotherapy for its broad-spectrum 
activity against various malignancies [276]. However, 
acquired resistance often develops, with 
ubiquitination pathways playing a crucial role by 
regulating EMT to confer resistance in different types 
of cancers (Table 4) [277]. In Dox-resistant HCC 
(HCC/Dox) cells, elevated ZEB1 expression drives 
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EMT-mediated resistance [278]. Mechanistically, 
SIAH1 downregulation inhibits ubiquitination- 
mediated degradation of ZEB1, thereby enhancing 
ZEB1 stability to promote chemoresistance in HCC in 
vitro [278]. Similarly, the Dox resistance of OS cells is 
attributed to SIAH1 downregulation, which reduces 
ZEB1 ubiquitination and stabilizes ZEB1, thereby 
facilitating EMT and Dox resistance in vitro [279]. 
Furthermore, RNF8 stabilizes Twist via K63-linked 
polyubiquitin chains, promoting nuclear translocation 
and Dox resistance in TNBC in vitro and in vivo [146]. 
Conversely, FBXW7 suppresses EMT in HCC cells to 
enhance Dox sensitivity in vitro [280]. Further study 
showed that MiR-223 targets FBXW7 to enhance Dox 
resistance in CRC in vivo [281]. Additionally, DUBs 
augment Dox resistance in various tumors. For 
instance, USP14 modulates Wnt signaling to enhance 
resistance in MM in vitro [282], and USP29 stabilizes 
Snail through deubiquitination to boost resistance to 
Dox and paclitaxel in NSCLC cells in vitro and in vivo 
[283]. Moreover, USP45 stabilizes MYC in cervical 
cancer, upregulating vimentin, N-cadherin, and 
cancer stem cell protein expression to confer Dox 
resistance in vivo [284]. These findings collectively 
showed that ubiquitin-mediated regulation of EMT 
regulators constitutes a fundamental molecular 
mechanism for acquiring Dox resistance. 

Gemcitabine 

Gemcitabine (GEM) is the first-line 
chemotherapy for pancreatic cancer (PC), but its 
efficacy is frequently compromised by acquired 
resistance [285]. Ubiquitin-mediated EMT is emerging 
as a critical mechanism underpinning this 
phenomenon [286]. Key ubiquitin-related regulators 
contribute to this resistance (Table 4). The 
ubiquitin-protein ligase E3 module N-recognition 5 
(UBR5) is markedly upregulated in GEM-resistant PC 
cells and clinical samples, where it promotes 
resistance through EMT activation [286]. 
Mechanistically, UBR5 degrades O-GlcNAcase (OGA) 
by K48-linked ubiquitin chains, thereby inducing 
EMT and GEM resistance in vitro and in vivo [286]. 
Concurrently, TRIM59 stabilizes RBPJ by K63-linked 
ubiquitin chains, activating Notch signaling to induce 
EMT and drive GEM resistance in PC in vitro and in 
vivo [213]. RNF126 ubiquitinates and degrades PTEN, 
thereby activating the AKT/GSK-3β/β-catenin 
pathway to induce EMT and drive GEM resistance in 
PC in vitro and in vivo [287]. Moreover, the 
ubiquitin-like protein FAT10 stabilizes forkhead box 
protein M1 (FOXM1) by inhibiting ubiquitin- 
mediated degradation, thereby facilitating EMT and 
GEM resistance in PC in vitro [288]. Additionally, 
microRNA participates in this resistance network, 

such as miR-15b downregulates Smurf2 to inhibit 
Smad2/3 ubiquitination and degradation, thereby 
activating the TGF-β-induced EMT and driving 
resistance in PC in vitro [289], while MiR-223 
downregulates FBW7 to exacerbate EMT and 
resistance in GEM-resistant PC in vitro [209]. 
Collectively, these mechanisms highlight ubiquitin- 
regulated EMT as a pivotal driver of GEM resistance 
in PC. 

Others 

Beyond mentioned above, multiple therapeutic 
agents exhibit resistance mechanisms linked to 
ubiquitin-mediated EMT processes, including 
temozolomide (TMZ), sorafenib, and Lenvatinib 
(Table 4) [290, 291]. TMZ, a chemotherapeutic 
alkylating agent commonly used for GBM treatment, 
is limited in efficacy by resistance mechanisms and 
the blood-brain barrier despite its first-line status [292, 
293]. Dysregulation of ubiquitination enhances TGF-β 
signaling, which contributes to tumor progression 
and TMZ resistance. For instance, the E3 ligase 
HERC3 degrades SMAD7 by K48-linked ubiquitin 
ligase, thereby activating TGF-β signaling, inducing 
EMT and autophagy, and conferring TMZ resistance 
in GBM in vitro and in vivo [161]. In HCC, RNF8 
promotes EMT and increases sorafenib and 
Lenvatinib resistance; its silencing suppresses EMT 
and enhances drug sensitivity by downregulating 
N-cadherin and Snail in vitro [294]. Similarly, STAM 
Binding Protein Like 1 (STAMBPL1) mitigates 
TRIM21-mediated lysosomal degradation of AXL, 
reinforcing the mesenchymal phenotype and 
sunitinib resistance in Kidney Renal Clear cell 
carcinoma (KIRC) in vitro and in vivo [295]. In BC, 
USP30 stabilizes Snail through removing K48-linked 
polyubiquitin chains, accelerating EMT and 
promoting paclitaxel chemosensitivity in vitro and in 
vivo [112]. Similarly, OTUD4 stabilizes Snail via 
ubiquitination to promote malignant phenotypes, 
driving resistance to BRAF inhibitors like 
vemurafenib and PLX4720 in melanoma in vitro [118]. 
Collectively, ubiquitination and deubiquitination are 
critical regulators of EMT-associated therapeutic 
resistance in human malignancies. 

Targeting ubiquitination reverses 
EMT-induced metastasis and chemoresistance 

Targeting ubiquitination-related factors is a 
prominent research direction in cancer therapy, 
particularly for countering EMT-mediated metastasis 
and drug resistance [296]. Multiple inhibitors specific 
to E3 ligases or DUBs effectively reverse these 
processes [297]. For instance, PSMD14 inhibitor 
Thiolutin reduces Snail stability to inhibit EMT, 
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suppressing motility and stemness while enhancing 
cisplatin sensitivity in ESCC in vitro and in vivo [268]. 
Similarly, the Hakai inhibitor Hakin-1 impedes 
E-cadherin ubiquitination to hinder EMT and tumor 
progression in CRC in vitro and in vivo [298]. The 
MDM2 antagonist Nutlin-3 suppresses 
TGF-β-Smads-mediated EMT and metastasis in OC in 
vitro [163]. DUB inhibitors like WP1130 promote Snail 
degradation by targeting Dub3 or USP9X, inhibiting 
EMT and metastasis in BC while sensitizing TNBC to 
cisplatin and paclitaxel in vitro and in vivo [102, 248]. 
Other examples include Nucleoredoxin interacts with 
DUB3 to promote Snail degradation via the 
ubiquitin-proteasome system and suppress HCC 
progression in vitro and in vivo [98]. Natural 
compounds such as Erianin from Dendrobium 
chrysotoxum induce Snail degradation via OTUB1 
targeting to suppress metastasis in ESCC models in 
vitro [299]. Biochanin A facilitates ZEB1 ubiquitination 
and degradation, reversing EMT-associated cisplatin 
resistance in LUAD in vitro and in vivo [300]. 
Cinobufotalin inhibits USP7-mediated MYC 
deubiquitination to suppress EMT and increase 
cisplatin sensitivity in LUAD [301], while P5091 
reduces USP47-induced EMT in breast epithelial cells 
[246]. Other small molecules like compound 3d 
disrupt PELI1-Snail/Slug interactions to inhibit EMT 
and metastasis in TNBC in vitro and in vivo [302]. 
Similarly, the USP2 inhibitor ML364 induces Snail 

degradation to inhibit proliferation and metastasis in 
choroidal melanoma in vitro and in vivo [99]. The USP4 
inhibitor U4-I05 degrades β-catenin and Twist1, 
inhibiting metastasis and enhancing sensitivity to 
oxaliplatin and 5-FU in CRC in vitro and in vivo [303]. 
Additionally, the USP28 inhibitor compound 19, a 
[1,2,3] triazolo [4,5-d] pyrimidine derivative, blocks 
proliferation and EMT in GC [304]. Collectively, these 
research results indicate that targeting 
ubiquitination-related factors possesses great 
potential in addressing EMT-driven tumor metastasis 
and chemoresistance. 

Drug development targeting E3 ligases 
and DUBs 
Drug development targeting E3 ligases 

E3 ligases act as key regulators by mediating the 
ubiquitination of specific substrates, ultimately 
degrading the substrates or enabling signal 
transmission [305]. The dysregulation of E3 ligases is 
associated with several human diseases, particularly 
cancers, making them attractive targets for the 
development of new drugs [305]. In this section, we 
systematically summarize the current situation of 
drug development targeting E3 ligases and DUBs and 
their potential mechanisms (Table 5).  

 

Table 5. Summary of pharmacological strategies directly targeting the E3 ligase or DUBs for cancer therapy in clinical trials 

Target Drug Mechanism Cancer types Phase Identifier 
Drug targeting E3 ligases 
CRBN ARV-110 An inhibitor of PROTACs with E3 CRBN, 

targeting the androgen receptor. 
Prostate cancer Phase I  

Phase II 
NCT05177042, NCT03888612 

ARV-471 An inhibitor of PROTACs with E3 CRBN, 
targeting the estrogen receptor. 

Breast cancer Phase I 
Phase II 
Phase III 

NCT04072952, NCT05548127, NCT05732428, 
NCT05573555, NCT05654623, NCT05501769, 
NCT06125522, NCT05463952 

CC92480 
(Mezigdomide) 

A novel E3 ligase CRBN modulator, 
targeting IKZF1 and ZFP91. 

Multiple myeloma Phase I  
Phase II 

NCT05707390, NCT06645678, NCT07032714, 
NCT05552976, NCT06163898, NCT06988488, 
NCT05519085, NCT03989414, NCT03374085 

VHL HP518 Recruits VHL to ubiquitinate and 
degrade the AR protein. 

Prostate cancer Phase I  
Phase II 

NCT05252364, NCT06155084 
 

CRL4-CRBN 
  

CC-90009 Recruits the CRL4-CRBN E3 complex to 
ubiquitinate and degrade GSPT1. 

Acute myeloid leukemia Phase I  
Phase II 

NCT04336982, NCT02848001 

KPG-818 Specifically binds to CRBN, modulating 
the activity of the CRL4-CRBN complex. 

Hematological malignancies Phase I NCT04283097 

Cbl-b NX-1607 Binds to Cbl-b, preventing activation and 
inhibiting function. 

Advanced malignancies Phase 1 NCT05107674 

MDM2 RG7112 Binds to MDM2 and disrupts MDM2-p53 
interaction, stabilizing p53. 

Myelogenous leukemia, 
Neoplasms, Sarcoma 
Hematologic neoplasms,  

Phase I  NCT01677780, NCT00559533, NCT00623870, 
NCT01143740, NCT01164033, NCT01605526 

 APG115 Disrupts MDM2-p53 interaction, 
inducing cell-cycle arrest and apoptosis. 

Solid tumor or lymphoma Phase I NCT02935907, CTR20170975 

 JNJ-26854165 
(Serdemetan) 

Inhibits HDM2-P53 interaction, 
stabilizing p53. 

Neoplasms Phase I NCT00676910 

 ALRN-6924 Binds to MDM2 and MDMX to disrupt 
MDM2-p53 interaction, stabilizing p53. 

Leukemia, Solid Tumors Phase I NCT03654716, NCT02909972, NCT02264613, 
NCT03725436, NCT05622058 
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Target Drug Mechanism Cancer types Phase Identifier 
 RG7388 

(Idasanutlin) 
Binds to MDM2 to disrupt MDM2-p53 
interaction, stabilizing p53. 

Acute myeloid leukemia, 
Solid tumors 

Phase I NCT02670044, NCT03362723, NCT02828930, 
NCT01773408, NCT01462175, NCT01901172 

 MK-8242 Prevents HDM2-P53 interaction, 
stabilizing p53. 

Solid tumors, Acute 
myeloid leukemia 

Phase I  NCT01463696, NCT01451437  

 SAR405838 High-affinity binds to MDM2 to disrupt 
MDM2-p53 interaction, stabilizing p53. 

Neoplasm malignant Phase I NCT01636479, NCT01985191 

 CGM097 Binds to MDM2 to disrupt MDM2-p53 
interaction, stabilizing p53. 

Solid tumors Phase I NCT01760525 

 Milademetan 
(DS-3032b) 

Specifically binds to MDM2 to disrupt 
MDM2-p53 interaction, stabilizing p53. 

Advanced solid tumor, 
Myeloid leukemia, 
Myeloma, Dedifferentiated 
liposarcoma 

Phase I NCT01877382, NCT03671564, NCT03614455, 
NCT02579824, NCT04979442 

 Siremadlin 
(HDM-201) 

Binds to the binding pocket of p53 in  
MDM2, competitively inhibiting MDM2–
p53 interaction to stabilize p53. 

Colorectal cancer, Solid and 
hematological tumors, 
Liposarcoma 

Phase I NCT02890069, NCT02143635, NCT02343172 

 AMG232 Binds to MDM2 to disrupt MDM2-p53 
interaction, stabilizing p53. 

Malignancy Phase I  NCT01723020, NCT02110355, NCT02016729 

 RO6839921 An inactive pegylated prodrug of the oral 
MDM2 antagonist to disrupt MDM2-p53 
interaction, stabilizing p53.  

Acute myeloid leukemia Phase I NCT02098967 

 BI907828 Binds to MDM2 to disrupt MDM2-p53 
interaction, stabilizing p53. 

Different types of advanced 
cancer, Glioblastoma 

Phase I NCT03449381, NCT05376800, NCT03964233 

IAPs GDC-0152 Binds to BIR domains of ML-IAP, XIAP, 
cIAP1, and cIAP2 to degrade cIAP1, 
promoting cell apoptosis. 

Advanced or metastatic 
malignancies 

Phase I NCT00977067 

 LCL161 Binds to the BIR3 domain of cIAPs, 
inducing their autoubiquitination and 
degradation. 

Colorectal cancer, Multiple 
myeloma, Solid tumors, 
Neoplasms, Small cell lung 
cancer, Breast cancer 

Phase I  
Phase II 

NCT02890069, NCT03111992, NCT01240655, 
NCT01968915, NCT01617668, NCT01098838, 
NCT02098161, NCT02649673 

 AT-406 Binds to XIAP and cIAPs, inducing cIAP1 
degradation and caspase activation. 

Adenocarcinoma of the 
pancreas, Squamous cell 
carcinoma, Solid tumors 

Phase I  
Phase II 

NCT04122625, NCT03871959, NCT02022098, 
NCT03270176, NCT01078649 

 TL-32711 Binds to the BIR3 domain of cIAPs, 
inducing their autoubiquitination and 
degradation 

Ovarian cancer Phase I NCT01940172 

 APG-1387 A next-generation IAP inhibitor mimics 
endogenous SMAC to degrade IAPs. 

Solid tumors Phase I NCT03386526 

 AEG-40826 A selectively inhibits IAP biological 
activity, restores apoptotic signaling. 

Advanced solid tumors Phase I NCT00708006 

 BI-891065 Binds to CIAPs and promotes their 
degradation, inducing tumor cell 
apoptosis. 

Neoplasm, Non-small-cell 
lung carcinoma 

Phase I NCT04138823, NCT03166631 

CRLs MLN4924 
(Pevonedistat) 

Blocks the activation of NEDD8 by 
competitively binding to the 
adenosineylation site of NAE, thereby 
inhibiting cullin ring neddylation. 

Multiple myeloma, Myeloid 
leukemia, Mesothelioma, 
Solid neoplasm, 
Lymphoblastic leukemia, 
Metastatic melanoma 

Phase I 
Phase II 

NCT03770260, NCT04712942, NCT03319537, 
NCT03330106, NCT03814005, NCT03349281, 
NCT02610777, NCT02782468, NCT03486314, 
NCT03459859, NCT01862328, NCT01814826, 
NCT03057366, NCT02122770, NCT00911066, 
NCT00722488, NCT00677170, NCT01011530 

Drug targeting DUBs 
USP14 
UCHL5  

VLX1570 Binds to USP14 and UCHL5 to inhibit 
their function.  

Multiple myeloma Phase I  
Phase II 

NCT02372240 

USP1 KSQ-4279 A selective small molecule inhibitor of 
USP1 with anti-proliferative activity in 
tumors with HRR mutations. 

Advanced solid tumors Phase I NCT05240898 

 TNG348 A reversible allosteric inhibitor, 
inhibiting its deubiquitinase activity by 
binding to the allosteric site of USP1 

BRCA1/2 mutant tumors or 
HRD+ solid tumors 

Phase I  
Phase II 

NCT06065059 

 XL309 A selective USP1 inhibitor with an 
unknown binding mechanism 

Advanced solid tumors Phase I NCT05932862 

 SIM0501 A selective USP1 inhibitor with an 
unknown binding mechanism 

Advanced solid tumors Phase I NCT06331559 

 HSK39775 A selective USP1 inhibitor with an 
unknown binding mechanism 

Advanced solid tumors Phase I  
Phase II 

NCT06314373 

UCHL3 Perifosine A selective UCHL3 inhibitor with an 
unknown binding mechanism 

Pediatric solid tumors, 
Refractory tumors, 
Leukemia, Breast cancer, 
Colorectal cancer 

Phase I  
Phase II 
Phase III 

NCT01049841, NCT00873457, NCT00391560, 
NCT00054145, NCT01097018 
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PROTACs and Molecular Glue Degraders  

E3 ligases play a crucial role in the ubiquitination 
process and are therefore essential components of 
PROTACs and molecular glues [306, 307]. 
Proteolysis-targeting chimera (PROTAC) technology 
plays a pivotal role in the development of 
small-molecule drugs, leveraging the 
ubiquitin-proteasome system to induce protein 
degradation [308]. PROTACs are heterobifunctional 
molecules that facilitate the proximity between a 
target protein and an E3 ligase, leading to 
ubiquitination and subsequent proteasomal 
degradation of the target protein [309]. Several 
PROTACs are currently undergoing clinical trials for 
cancer therapy. For instance, ARV-110, also known as 
bavdegalutamide, is an investigational drug being 
evaluated in phase 1/2 clinical trials for the treatment 
of metastatic castration-resistant prostate cancer 
(mCRPC) [310]. A phase 1b study is also evaluating 
the combination of ARV-110 with abiraterone in 
patients with metastatic prostate cancer [311]. 
Furthermore, preclinical studies have demonstrated 
that ARV-110 can degrade AR by ≥95% and exhibits 
antitumor activity in enzalutamide-naive and 
resistant prostate cancer xenograft models [312]. 
ARV-471 is an orally bioavailable PROTAC degrader, 
which has potential antitumor activity in BC 
treatment by targeting estrogen receptor (ER) [313]. 
For instance, ARV-471 therapy was well-tolerated and 
showed antitumor activity in patients with 
ER+/HER2- locally advanced or metastatic BC in a 
phase I clinical trial [313]; current phase III trials are 
evaluating its utility in locally advanced and 
metastatic BC [314]. Despite PROTACs having shown 
great potential, challenges remain in their clinical 
development, including poor oral bioavailability, 
large molecular weights, and dependencies on 
specific E3 ligase receptors [315].  

Molecular glues offer an alternative approach to 
targeted protein degradation [307]. These small 
molecules induce interactions between a target 
protein and an E3 ligase, leading to the degradation of 
the target protein [307]. Compared to PROTAC, 
molecular glues have several advantages, including 
smaller molecules, improved cell permeability, and 
tissue specificity, enabling more efficient promotion 
of E3 ligase-target protein interactions and 
ubiquitination [308, 316]. Several molecular glue 
degraders (MGDs) targeting E3 ligases are currently 
being evaluated in preclinical and clinical studies for 
cancer therapy [317]. For instance, CC-90009 recruits 
the cullin4-RING E3 ubiquitin ligase (CRL4)-cereblon 
(CRBN) complex to induce proteasomal degradation 
of G1-to-S phase transition 1 (GSPT1), leading to 

potent suppression of acute myeloid leukemia (AML) 
in preclinical studies [318]. Furthermore, the clinical 
trial of CC-90009 to treat leukemia is under 
investigation [318]. Overall, targeted protein 
degradation using PROTACs and molecular glues is a 
promising therapeutic strategy for treating various 
diseases, including cancer [319]. While challenges 
remain in their clinical development, ongoing 
research is focused on improving their selectivity, 
bioavailability, and efficacy. 

MDM2 inhibitors 

MDM2 inhibitors represent a significant 
therapeutic approach targeting MDM2, an E3 ligase 
that negatively regulates p53 activity [320]. These 
inhibitors aim to restore p53 function in tumors 
harboring wild-type TP53 by disrupting he 
interaction between MDM2 and p53 [321]. Several 
MDM2 inhibitors have progressed to clinical trials, 
evaluating their safety, efficacy, and optimal dosing 
across various cancer types [322, 323]. Clinical trials 
primarily focus on patients with cancers retaining 
wild-type TP53, as the mechanism of action depends 
on p53 reactivation. MDM2 inhibitors have shown 
some clinical activity, especially in hematological 
malignancies such as AML and chronic lymphocytic 
leukemia (CLL) [321]. For instance, a phase I study of 
RG7112 in hematologic malignancies assessed dose 
and safety [324], and subsequent phase Ib trials 
explored RG7112 in combination with Ara-C for AML 
treatment [325], as well as monotherapy for 
relapsed/refractory solid tumors [326]. Another 
phase Ib study evaluated RG7112 with Dox in 
advanced soft tissue sarcoma [327]. APG-115, a potent 
small-molecule MDM2 inhibitor and immune 
modulator, demonstrated promising antitumor 
activity [328]. Subsequent phase I trials in patients 
with advanced solid tumors assessed its safety, 
pharmacokinetics, pharmacodynamics, and 
antitumor effects [328]. A Chinese study 
(CTR20170975) similarly focused on APG-115 in 
advanced soft tissue sarcomas [329]. Further research 
suggests that APG-115 enhances programmed death 
ligand 1 (PD-L1) immunotherapy efficacy in thyroid 
cancer [330]. Additionally, other small-molecule 
MDM2 inhibitors, including JNJ-26854165 
(Serdemetan), ALRN-6924, RG7388 (Idasanutlin), 
MK-8242, SAR-405838, CGM097, DS3032b 
(Milademetan), Siremadlin (HDM-201), AMG232, 
RO6839921, and BI907828, are under investigation in 
clinical trials to assess their therapeutic potential 
(Table 5) [321, 331-341]. However, resistance to 
MDM2 inhibitors represents a significant obstacle. 
The mechanisms of resistance can be categorized 
broadly as p53-dependent or p53-independent [342]. 
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P53-dependent resistance involves alterations in the 
p53 pathway, such as TP53 mutations or 
dysregulation of p53 target genes [343]. 
P53-independent resistance entails activation of 
alternative signaling pathways that circumvent p53 
reactivation [344]. Furthermore, combination 
therapies pairing MDM2 inhibitors with 
chemotherapy, targeted therapies, or immunotherapy 
offer a promising avenue to enhance efficacy [345]. 
Understanding these mechanisms is critical for 
developing strategies to overcome resistance. 

IAP inhibitors 

Inhibitor of Apoptosis Proteins (IAPs) are key 
regulators of programmed cell death, and their 
inhibitors are emerging as potential cancer 
therapeutics. Small-molecule IAP inhibitors mimic the 
endogenous IAP antagonist Smac/DIABLO. They 
bind with high affinity to cellular IAP1 (cIAP1), 
cIAP2, and X-linked IAP (XIAP), subsequently 
inducing their proteasome-dependent degradation 
[346]. Specifically, the IAP antagonist GDC-0152 
entered phase I clinical trials to evaluate safety, 
tolerability, and pharmacokinetics in patients with 
advanced solid tumors [347, 348]. Preclinical studies 
demonstrate that GDC-0152 binds the XIAP BIR3 
domain and the BIR domains of cIAP1/cIAP2, 
promotes cIAP1 degradation, and reduces the 
viability of BC cells [346, 347]. GDC-0152 can also 
modulate ABCB1-ATPase activity and suppress 
BIRC5 expression, mechanisms associated with 
overcoming multidrug resistance [348]. LCL161, 
another Smac mimetic, has undergone evaluation as a 
single agent and in combination therapies [349, 350]. 
For instance, LCL161 has been investigated in patients 
with intermediate or high-risk myelofibrosis who 
have failed or are intolerant to JAK inhibitors [351]. A 
phase I study in Japanese patients with advanced 
solid tumors combined LCL161 with paclitaxel, while 
data suggest an increased risk of infection with the 
combination [349]. Currently, several IAP inhibitors 
are in clinical trials, including AT-406 (NCT04122625, 
NCT03871959, NCT02022098, NCT03270176, 
NCT01078649), TL-32711(NCT01940172), APG-1387 
(NCT03386526), AEG40826 (NCT00708006), and 
BI-891065 (NCT04138823, NCT03166631), 
demonstrating promising antitumor activity (Table 5) 
[29, 352-354]. Despite their promise, challenges 
remain with IAP inhibitor development, including 
toxicity/tolerability issues, optimal patient selection 
strategies, primary and acquired resistance 
mechanisms, and potential off-target effects [355]. 
Further research is essential to fully realize the clinical 
potential of targeting IAPs in cancer therapy. 

Drug development targeting DUBs 
DUBs play crucial roles in cellular processes 

such as protein homeostasis, DNA repair, signal 
transduction, and epigenetic regulation. 
Dysregulation of DUB activity is implicated in diverse 
pathologies, including cancers, autoimmune 
disorders, chronic inflammation, and 
neurodegenerative diseases [356]. Moreover, DUBs 
possess well-defined catalytic sites, most of which 
contain a catalytic cysteine. Consequently, DUBs are 
emerging as promising targets for drug discovery 
[357]. DUB inhibitors can promote the degradation of 
oncogenic proteins, particularly those stabilized by 
DUBs and resistant to direct targeting [356]. Specific 
DUBs, such as USP7, have been identified as potential 
targets in malignancies, including hematological 
cancers [358]. Based on the types of target enzymes 
they act upon, the current small molecule inhibitors of 
DUBs are classified as: USP family inhibitors, UCH 
family inhibitors, JAMM family inhibitors, MJD 
family inhibitors, OUT family inhibitors, and SENP 
family inhibitors [35]. Among them, the USP family is 
the most extensively studied in preclinical research. 
For instance, HBX19818 and P22077 (USP inhibitors 
targeting USP7, USP14, and USP22) suppress cancer 
cell proliferation and enhance the efficacy of 
conventional therapies like Dox [359, 360]. 
Additionally, targeting DUBs can reverse 
chemoresistance in cancer cells, offering a strategy for 
more effective treatment [361, 362]. Despite growing 
interest in DUB biological function and potential as 
therapeutic targets, few selective small-molecule 
inhibitors and no approved drugs currently exist 
[363]. 

Several small molecules targeting oncogenic 
DUBs have been identified, with some demonstrating 
promising anticancer activity and advancing into 
clinical trials (Table 5) [364, 365]. VLX1570, a selective 
inhibitor of USP14 and UCHL5 derived from b-AP15, 
exhibited significant antitumor effects in murine 
models of Waldenstrom macroglobulinemia (WM) by 
modulating BCR signaling and CXCR4 expression 
[366]. However, its clinical development encountered 
challenges. In a phase I/II clinical trial 
(NCT02372240), dose-limiting toxicities were 
observed in patients with MM during dose escalation, 
leading to trial termination in 2017 [367]. Perifosine, 
an oral alkylphospholipid that targets UCHL3, shows 
significant activity against BC cells both in vitro and in 
vivo [368]. In a phase I clinical trial of 
recurrent/refractory pediatric solid tumors, the 
Perifosine combination of AKT and mTOR inhibitors 
was safe and feasible [369]. However, in a phase II 
clinical trial of patients with metastatic BC, only 19% 
of the patients experienced stable disease after 2 
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months of treatment [368]. KSQ-4279, an inhibitor of 
USP1, displays strong synergistic activity with PARP 
inhibitors in BRCA-mutant cancers [370]. In a phase 1 
trial (NCT05240898), KSQ-4279 showed promising 
efficacy and safety both as monotherapy and in 
combination with Olaparib or Carboplatin. 
Additionally, other USP1 inhibitors such as TNG348, 
XL309, SIM0501, and HSK39775 are also progressing 
through clinical trials [35, 364]. Notably, TNG348 
development was halted due to significant liver 
toxicity observed in patients treated beyond eight 
weeks, leading to termination of its phase 1/2 trial 
(NCT06065059). XL309 has demonstrated preclinical 
efficacy in BRCA1-mutated TNBC and is being 
evaluated in an ongoing phase 1 trial (NCT05932862) 
for safety and preliminary antitumor activity. 
Furthermore, HSK39775 and SIM0501 are under 
investigation in phase 1 trials (NCT06331559, 
NCT06314373) to assess safety and initial efficacy in 
advanced solid tumors. Collectively, these findings 
underscore the therapeutic potential of DUB-targeting 
agents while highlighting critical challenges in 
development, particularly the need for rigorous safety 
monitoring during early-phase clinical investigations.  

Conclusions and perspectives  
EMT is a crucial process in cancer metastasis, 

facilitating tumor progression, invasion, and drug 
resistance [371]. Cells undergoing EMT frequently 
exhibit diminished sensitivity to chemotherapeutic 
agents, which contributes to treatment failure and 
disease relapse [260]. Dysregulation of E3 ligases and 
DUBs contributes to the progression of EMT [372], 
which involves abnormal activation of EMT-TFs and 
the EMT-associated signaling pathways [50]. 
Furthermore, accumulating evidence demonstrates 
that ubiquitination-mediated regulation of EMT 
significantly influences metastasis and 
chemoresistance in tumors. In this review, we 
comprehensively reviewed the mechanisms by which 
E3 ligases and DUBs regulate EMT and further 
emphasize the significance of ubiquitination- 
regulated EMT in tumor metastasis and 
chemoresistance. Furthermore, some preclinical and 
clinical evidence indicate that drugs targeting E3 
ligases or DUBs have reversed EMT-induced 
metastasis and resistance in cancer.  

Although drug development targeting 
ubiquitination factors holds significant promise for 
cancer therapy, the development of E3 or DUB 
inhibitors has encountered substantial challenges. The 
primary reason is due to the high structural and 
functional diversity of these enzymes, which 
complicates achieving inhibitor specificity and 
avoiding off-target effects that could lead to toxicity. 

Moreover, ubiquitination dynamics are influenced by 
cancer-specific mutations, microenvironmental 
factors, and heterogeneity in the EMT process, further 
exacerbating the complexity of inhibitor development. 
To address these challenges, future research should 
pursue innovative screening and development 
strategies, including: (1) Utilizing high-throughput 
assays and advanced cellular models to enable 
sensitive quantification of DUB activity and 
inhibition; (2) developing dual-action inhibitors 
targeting ubiquitination and EMT effectors 
simultaneously to counteract treatment resistance, 
building on recent progress in characterizing selective 
compounds against E3 ligases or DUBs; (3) validating 
predictive biomarkers in clinical cohorts for patient 
stratification and therapeutic optimization; (4) 
Employing emerging technologies, such as 
proximity-based labeling approaches for mapping 
ubiquitin dynamics, to resolve unanswered questions 
regarding ubiquitin signaling specificity; (5) 
identifying specific ubiquitination-EMT networks 
across diverse cancer types to clarify the mechanisms 
of ubiquitination-dependent EMT regulation in 
chemoresistance, as well as examining the 
universality and variability of this mechanism across 
different tumor types. 

In conclusion, ubiquitination regulates tumor 
EMT through various mechanisms, thereby 
influencing tumor metastasis and treatment 
resistance. Targeting specific E3 ligases or DUBs 
reverses the EMT process, leading to sensitizing 
tumor cells to chemotherapeutic agents and 
suppressing distant metastasis. These findings 
provide novel insights into the mechanisms 
underlying tumor chemoresistance. Consequently, 
the development of E3 and DUB inhibitors offers a 
promising strategy for mitigating chemoresistance 
and metastasis in clinical oncology. 
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to E6AP carboxyl terminus; HECTD1: HECT domain 
E3 ubiquitin protein ligase 1; HERC3: HECT and RLD 
domain containing E3 ubiquitin protein ligase 3; Hh: 
hedgehog; HIF: hypoxia-inducible Factor; HRD+: 
homologous recombination deficiency positive; IAP: 
inhibitor of apoptosis protein; iCCA: intrahepatic 
cholangiocarcinoma; KIRC: kidney renal clear cell 
carcinoma; LC: lung cancer; LOX: lysyl oxidase; 
LUAD: lung adenocarcinoma; MARCH: membrane- 
associated RING-CH protein; MDM2: murine double 
minute 2; MGD: molecular glue degrader; MIB1: MIB 
E3 ubiquitin protein ligase 1; MM: multiple myeloma; 
MMPs: matrix metalloproteinases; mCRPC: 
metastatic castration-resistant prostate cancer; NAE: 
NEDD8-activating enzyme; NEDD4L: neural 
precursor cell expressed developmentally 
downregulated 4-Like; NEDD8: neural precursor cell 
expressed developmentally downregulated 8; NICD: 
notch intracellular domain; NSCLC: non-small cell 
lung cancer; OC: ovarian cancer; OGA: O-GlcNAcase; 
OS: osteosarcoma; OSCC: oral squamous cell 
carcinoma; OTU: ovarian tumor-related protease; 
OTUD6B: ovarian tumor domain-containing 6B; 
PARK2: parkin RBR E3 ubiquitin protein ligase; PC: 
pancreatic cancer; PCa: prostate cancer; PD-L1: 
programmed cell death ligand 1; PELI1: pellino1; 
PROTAC: proteolysis-targeting chimera; PSMD14: 
proteasome non-ATPase regulatory subunit 14; 
PTEN: phosphatase and tensin homolog; PTM: 
post-translational modification; RBR: 
RING-Between-RING; RBPJ: recombination signal 
binding protein for immunoglobulin Kappa J region; 
RCC: renal cell carcinoma; RING: really interesting 
new gene; RNF: ring finger protein; SCLC: small cell 
lung cancer; SMAC: second mitochondrial-Derived 
activator of caspases; SIAH1: seven in absentia 
homolog 1; SIP: siah-interacting protein; SMAD: small 
mother against decapentaplegic; Smo: smoothened; 
Snail: snail family transcriptional repressor; SPOP: 
speckle-type POZ protein; STAT3: signal transducer 
and activator of transcription 3; STAMBPL1: STAM 
binding protein like 1; STUB1: STIP1 homology and 
U-box containing protein 1; SUZ12: suppressor of 

zeste 12; TAK1: transforming growth factor 
β-activated kinase 1; TβRI: TGF-β type I receptor; 
TβRII: TGF-β type II receptor; TGF-β: transforming 
growth factor β; TMZ: temozolomide; TNBC: 
triple-negative breast cancer; TRIM: tripartite motif; 
TRAF6: TNF receptor associated factor 6; Twist: twist 
family BHLH transcription factor; Ub: Ubiquitin; 
UBR5: ubiquitin ligase E3 component N-recognition 
protein 5; UCHL5: ubiquitin carboxyl-terminal 
hydrolase isozyme L5; UPS: ubiquitin-proteasome 
system; USP: ubiquitin-specific protease; VHL: von 
hippel-lindau; WM: waldenström macroglobu-
linemia; WWP2: WW domain containing E3 ubiquitin 
protein ligase 2; XIAP: X-linked inhibitor of apoptosis 
protein; ZEB1/2: zinc finger E-box binding homeobox 
1/2; β-TrCP: β-transducin repeat-containing protein; 
UCHs: ubiquitin carboxy-terminal hydrolase; 
MINDYs: motif interacting with ubiquitin-containing 
novel DUB; JAMMs: JAMM/MPN domain-associated 
metallopeptidases; MJDs: machado-joseph domain 
proteases; ZUFSP: Zinc finger and UFSP domain 
protein; SPSB3: SPRY Domain-Containing SOCS Box 
Protein 3; MARCH2: membrane associated 
ring-CH-type finger 2. 
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