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Abstract

Circadian rhythm disruption has been increasingly implicated in asthma and glucocorticoid (GC)
resistance. In this study, we discovered that disruption of the brain and muscle ARNT-like I (BMALI), a
significant activator of the circadian clock transcription, not only exacerbated allergic inflammation but
also induced GC resistance. The absence of BMALI intensified airway inflammation by activating the
NF-kB and AP-1 pathways and also impaired the anti-inflammatory effect of GC. Our findings indicated
that the deletion of BMALI reduced the phosphorylation level of the GC receptor (GR-Ser211), which
has a direct effect on the efficacy of GC and serves as a key indicator of GR activation. Additionally,
BMALI has a negative regulatory effect on the phosphatase dual specificity protein phosphatase 4
(DUSP4) of p38 mitogen-activated protein kinase (p38MAPK), which plays a crucial role in the
phosphorylation of GR. Consequently, our findings suggest that the absence of BMALI results in the
resistance of airway epithelial cells to GC due to the inhibition of GR phosphorylation via the
DUSP4-p38MAPK axis in HDM-induced asthma. We demonstrated that the inhibition of DUSP4
restored GR activation and improved GC responsiveness, highlighting a potential therapeutic strategy for
GC resistance driven by circadian disruption. Regulating the sleep disorder and circadian rhythm of
patients with asthma could become a potential treatment to increase GC sensitivity.
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Introduction

Asthma is a common chronic inflammatory  (GCs) remain the mainstay of asthma management.
disorder of the airways, affecting more than 300 However, a substantial subset of patients exhibits
million individuals worldwide and showing an  poor responsiveness to GC therapy, commonly
increasing global prevalence [1, 2]. Glucocorticoids  referred to as steroid-resistant asthma (SRA) [3-6].
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SRA significantly compromises disease control,
worsens prognosis, and places a heavy burden on
healthcare systems [7, 8]. While multiple mechanisms
have been proposed, including glucocorticoid
receptor (GR) dysfunction, the molecular basis
underlying GC resistance remains poorly understood.

The airway epithelium, as the frontline barrier
and immune modulator, plays a critical role in asthma
pathogenesis [9-12], and increasing evidence indicates
that its dysfunction may contribute to GC resistance
in asthma [13-15]. Glucocorticoids function through
binding to cytoplasmic GRs to modulate
anti-inflammatory gene transcription, and reduced
glucocorticoid efficacy has been linked to impaired
GR phosphorylation, particularly at Ser211 [16-21].
Among environmental triggers, house dust mite
(HDM) is a major perennial allergen in asthma [22].
Although the downstream alterations in GR signaling
have been partially characterized, the upstream
regulatory mechanisms, especially in the context of
HDM-induced asthma, remain poorly defined.

The circadian clock is a fundamental regulator of
physiological processes, including immune responses,
metabolism, and hormone signaling [22, 23]. Clinical
observations show that asthma symptoms worsen at
night and the early morning. Growing evidence have
revealed a correlation between asthma patients with
disturbed circadian rhythms and increased difficulty
in managing their symptoms, reflecting underlying
circadian influences [24-26]. Genetic studies further
support this connection: mice with circadian clock
gene deletion exhibit more severe airway
inflammation and reduced GC sensitivity [27, 28]. The
brain and muscle ARNT-like 1 (BMAL1) and the
circadian locomotor output cycle protein kaput
(CLOCK) are the two major transcriptional regulators
of the circadian system [29]. Mechanistically, the
CLOCK/BMAL1 complex has been reported to
regulate GR function, suggesting a mechanistic link
between the circadian clock and GR signaling [30, 31].

Based on these findings, we hypothesized that
BMALI1 deletion disrupts GR signaling and promotes
GC resistance in asthma. To test this, we deleted
BMALLI in airway epithelial cells and established a
mouse model to examine how its loss alters GC
responsiveness in HDM-induced asthma.

We found that circadian disruption and BMALI
deficiency = aggravated =~ HDM-induced airway
inflammation and diminished the anti-inflammatory
efficacy of dexamethasone (DEX). BMAL1 loss
leading to dual specificity protein phosphatase 4
(DUSP4) upregulation, reduced p38 mitogen-
activated protein kinase (p38MAPK) activation, and
decreased GR-Ser211 phosphorylation, thereby
impairing GC responsiveness. Importantly, DUSP4

inhibition restored p38MAPK activity and GR
function, highlighting the DUSP4-p38MAPK-GR axis
as a potential therapeutic target for circadian-related
GC resistance in asthma.

Results

Disruption of the circadian clock worsens
asthma symptoms in patients

To investigate the association between circadian
rhythms and asthma severity, we collected clinical
data from asthma patients who received standardized
treatment according to the GINA 2023 guideline at the
Department of Respiratory and Critical Care
Medicine, Nanfang Hospital, Southern Medical
University between September 2023 and September
2024.

All  patients voluntarily completed the
Morningness Eveningness Questionnaire (MEQ-SA),
which is used to assess the chronotype and sleep
quality of patients. The Asthma Control Test (ACT)
questionnaire was used to measure the level of
asthma control. A total of 70 patients with asthma
were included in the study, with 34 early chronotypes
and 36 late chronotypes. The distributions of
demographics (age, gender) were as follows: early
chronotype (mean + SD age, 42.9 +15.0; 64.7% female)
and late chronotype (mean +SD age, 44.1+12.5; 66.7%
female). Late chronotype patients had higher rates of
uncontrolled asthma compared with early chronotype
patients (41.7% vs 17.6%). Moreover, late chronotype
patients more frequently experienced = 2 annual
exacerbations (16.7% vs 5.88%) and = 3 exacerbations
(11.1% vs 0%). The late phenotype exhibited increased
symptom severity and required a higher average
daily hormone dosage (466.7ug/d vs 422.4ng/d)
(Table 1).

These findings suggest that disrupted circadian
alignment may be associated with worsened asthma
control and increased dependence on GC therapy.

Dysregulated BMALLI in airway epithelial cells
is correlated with severe asthma

To investigate how circadian disruption affects
asthma progression, we established a sleep
deprivation (SD) model of HDM-induced asthma in
C57BL/6] mice (Fig S1A). While SD does not entirely
replicate central clock dysfunction, it functions as a
surrogate for misaligned sleep-wake cycles.
Compared with HDM-treated mice, SD-HDM mice
exhibited more severe airway inflammation (Fig S1B).
We subsequently investigated the expression of
rhythmic mRNAs in the lungs of SD-HDM mice (Fig
S1C) and found a significant downregulation of
Bmall. Moreover, the immunofluorescence revealed
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that BMAL1 is prominently expressed within the
airway epithelium (Fig S1D-E). To investigate the
influence of circadian rhythm on allergic
inflammation, we analyzed the oscillating expression
pattern of Bmall in lung tissues from PBS-treated and
HDM-treated mice (Fig 1A). A decrease in the
rhythmic oscillation of Bmall was observed in HDM
mice (Fig 1B). We also observed significant variability
in inflammatory responses in the bronchoalveolar
lavage fluid (BALF) of HDM mice, particularly an
increase in T1 inflammatory factors (IL-6 and IFN-vy)
(Fig S1F) and T2 inflammatory markers (IL-4, IL-5,
IL-13, IL-25, IL-33, TSLP and IgE) during the low peak
of Bmall (Fig 1C). To further examine the role of
circadian disorders in airway epithelial cells, we
conducted a  comprehensive  analysis  of
transcriptomic datasets from bronchial exfoliating
cells (GSE74986). Our analysis revealed that
individuals diagnosed with severe asthma presented
markedly lower BMALL levels than individuals with
moderate asthma did (Fig 1D). As we expected, HDM
stimulation similarly reduced BMAL1 expression in
HBECs (Fig S1G). Interestingly, the RNA sequencing
results suggested that CLOCK and Cryptochromel
(CRY1) followed the same trend as BMALI. Other
circadian rhythm components, including PERIOD1
(PER1) and PERIOD2 (PER?2), did not differ between
the severe asthma group and the moderate asthma
group (Fig 1D). Furthermore, immunofluorescence of

Table 1. Baseline information on patients with asthma

human lung tissue revealed BMALI1 expression in the
central region of airway epithelial cells (Fig 1E).

These findings demonstrate that allergic stimuli
suppress BMALI expression in airway epithelial cells,
and that BMAL1 dysregulation correlates with
heightened inflammation and asthma severity.
Together, this suggests a significant association
between asthma progression and BMAL1 dysfunction
in the airway epithelium.

BMALI deficiency in HBECs increased the
HDM-induced inflammatory response

We subsequently investigated the potential
mechanisms by which BMAL1 deficiency in airway
epithelial cells contributes to the HDM-induced
inflammatory response. We knocked down BMALI
via a small interfering RNA (siRNA) (Fig 2A) and
subsequently performed RNA sequencing (Fig 2B).
Principal component analysis revealed clear
separation between the siBMALIl-treated group and
the HDM-treated group (Fig S2A-B). The BMAL1
deficiency  profoundly  altered the HBECs
transcriptome, with 657 significantly upregulated
genes and 486 significantly downregulated genes (Fig
S2C). And the sequencing results revealed BMALI
downregulation and revealed marked alterations in
circadian clock-related genes in the siBMAL1 group
(Fig S2D-E).

Total (n=70) Early chronotype (n=34) Late chronotype (n=36) P-value
MEQ-SA score >59 <41
Age 0.755
Mean (SD) 43.557 (13.671) 42.941 (14.973) 44.139 (12.504)
Gender, n (%) 0.863
Female 46 (65.7) 22 (64.7) 24 (66.7)
Male 24 (34.3) 12 (35.3) 12 (33.3)
Asthma control test (ACT) , n (%) 0.024*
Controlled (20-25) 32 (45.7) 21 (61.8) 11 (30.6)
Partly controlled (16-19) 17 (24.3) 7 (20.6) 10 (27.8)
Uncontrolled (5-15) 21 (30.0) 6 (17.6) 15 (41.7)
Annual exacerbations, n (%) 0.043*
0 36 (51.4) 22 (64.7) 14 (38.9)
1 22 (31.4) 10 (29.4) 12 (33.3)
2 8 (11.4) 2 (5.88) 6 (16.7)
>3 4 (5.71) 0(0) 4 (11.1)
Annual medical appointments, n (%) 0.117
Mean (SD) 7.871 (6.251) 6.735 (5.534) 8.944 (6.761)
Daily hormonal inhalation, n (%) 0.581
(Beclometasone)
200pg 12 (17.1) 5(14.7) 7 (19.4)
320pg 43 (61.4) 23 (67.6) 20 (55.6)
1000pg 15 (21.4) 6 (17.6) 9 (25.0)
Mean (SD) 445.123 (295.192) 422.353 (274.702) 466.667 (315.685) 0.8497

Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test. *P<0.05
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Figure 1. Dysregulated BMALLI in airway epithelial cells is correlated with severe asthma. (A) Schematic diagram of the experimental protocol for the modeling and
timing of sample collection in HDM experimental asthmatic mice (ZT0, ZT6, ZT12, and ZT18). (B) The mRNA level of Bmall in mouse lung tissues at 4 time points (ZT0, ZTé,
ZT12, and ZT18) throughout the day. (C) The levels of IL-4, IL-5, IL-13, IL-25, IL-33 and TSLP in BALF and HDM-IgE in serum at 4 time points were measured via ELISA (ZTO,
ZTé, ZT12,and ZT18). (D) mRNA expression levels of BMALI, CLOCK, CRYI, CRY2, PERI and PER2 in bronchial exfoliating cells from human samples in the GSE74986 dataset.
(E) Immunofluorescence staining demonstrated that BMALI is expressed mainly in bronchial epithelial cells from human lung samples (scale bar =100 um). *P<0.05, **P<0.01,

***P<0.001, ****P<0.0001

Gene ontology (GO) enrichment revealed that
the HDM-induced inflammatory response was
significantly enhanced in the BMAL1 knockdown
cells (Fig 2C). In the BMAL1-knockdown cells, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment suggested upregulation of
inflammation-related pathways including TNF, IL-17
and NF-xB pathways, involving multiple cytokines
and chemokines (Fig 2D). Furthermore, a heatmap of

cytokines and chemokines revealed an increase in the
expression  of  inflammatory = markers  in
BMAL1-knockdown cells (Fig 2E). Consistently, gene
set enrichment analysis (GSEA) suggested increased
inflammation after BMAL1 knockdown (Fig 2F).

These results indicate that BMALI functions as a
negative regulator of HDM-induced inflammatory
responses in airway epithelial cells.
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Figure 2. BMALLI deficiency in HBECs increased the HDM-induced inflammatory response. (A) Western blotting and qPCR showing the knockdown efficiency of
BMALI siRNA. (B) RNA sequencing of HBECs after BMALI depletion for 24 h. (C-D) Pathway enrichment analysis showing DEGs related to different pathway terms. (E)
Heatmap showing the targeted cytokine and chemokine related components. (F) GSEA showing the increase in the inflammatory response in the BMALI-silenced background.

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001

HDM induced more severe allergic
inflammation in Bmall-- mice

To assess the role of BMALLI in allergic airway
inflammation, we established an HDM-induced
asthma model using wild-type (WT) mice and Bmall-/-
mice (Fig 3A). The H&E, Masson and PAS staining
showed that the HDM challenge induced severe
airway inflammatory infiltration, mucus secretion
and airway remodeling in Bmall/- mice (Fig 3B-D).
BALF of Bmall”/- mice demonstrated a pronounced

increase in inflammatory cells, including eosinophils
(EOSs) and neutrophils (NEUs), after HDM challenge
(Fig 3E-F). The levels of T1 cytokines, including IFN-y
and IL-6, were markedly elevated in the knockout
mice (Fig 3G). Moreover, T2 cytokines (IL-4, IL-5, and
IL-13) were also elevated. Serum IgE and BALF
alarmin levels were significantly elevated in Bmall-/-
mice following HDM challenge (Fig 3H-]). Together,
these results indicate that Bmall deletion leads to
more severe airway inflammation upon HDM
challenge.

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21

6487

A
PBS or HDM i.p. PBS or HDM nasal Adminstration
Sensitization Challenge Sacrifice Group Sensitization Challenge
r‘*‘ i ¢ 'l' 1' l‘ l‘ ‘1‘ ‘L 'L l’ ‘l’ i 1' ¢ l’ l’ l‘ PBS Solvnet(100ul)  Solvnet(20ul)
WT I I R I
HDM 4000U 400U
(__‘ Day0 Day7 Day 8-21 Day 22 Solvnet(100ul)  Solvnet(20ul)
Bmal I
B H &E staining
Bmal 1" Bmall*

Wild-type Bmall™

o 57 Fkkk odokkk
H
24
=
23
H
g2
21 .
=
o
CRC Ry
T ES
Bmal 1"
Wild-type  Bmall™
40
S *REK kKK
3
2
]
2
H
2
=

Wild-type  Bmall™

éluo wkkk FEEK
ER
3
£ 60
F
£ 40
£
T 20
20
o CRKN
@’@@0&"
E F G *okkok
v s [—
Wild-type Bmall *kkk  kkokk E *kkok
6 AEES 1.2x10° = 1200 —
g o1 £ paqes] KERFE RREX = 1 Wild type-PBS
H 6  kk  kkkk S ; — — = :
ERSU o) L N & el ke B ﬂ ﬂ [ Wild type-HDM
= 3x10¢ z T rm £ [ ™ O Bmall-PBS
E g 60 : g 3 .
: 2x10 E‘l 4x10% § . g ) % 150 O Bmali”"-HDM
el ol o B
0 @ T
! ( : ¥ = 1L-6 1EN
S I’ EOS NEU LYM & e -y
® QS%\ & Qé =
H 1 J
*ok kK ns
. — —
i KAk *okokok Wild-type Bmall”
= '_' m e T30, — m 80 *kk
=507 ook sokkok kdkokk B *kkok Wild type-PBS ,—|
- 1 m M 2 *kkk 1 ns . P
= 100 * %k % o kk Kk 5 200 (| —i ] Wild type-HDM e 60 ook
2 5 ™ < *kk *¥¥¥ [ Bmall”-PBS %”40 1
] Ll m % [l ) e
£ 50 . £ 100 Fok KK O Bmall”"-HDM )
~
S a ERN i a0 o
EET ILs L3 < 7 ias w3 Tsee P D p D
g I ® §%

Figure 3. HDM induced more severe allergic inflammation in Bmall-- mice. (A) Schematic diagram of the experimental protocol for HDM sensitization and challenge.
(B) Representative images of H&E-stained lung tissue sections from the different groups (scale bar =100 um). The inflammation score was determined. (C-D) The amount of
collagen around the airways and the percentages of PAS-positive airway epithelial cells were quantified (scale bar =100 pm). (E) Numbers of total cells in the BALF. (F)
Examination of BALF samples showing the number of differential inflammatory cells. (G-I) ELISA results showing the levels of IL-6, IFN-y, IL-4, IL-5, IL-13, IL-25, IL-33 and TSLP
in the BALF. (J) Total serum IgE levels were assessed via ELISA. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, n = 5.

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21

BMALI deficiency impairs GC responsiveness
in HBECs

Our previous data showed that Bmall~/- mice
exhibit a mixed granulocytic asthma phenotype,
featuring EOS and NEU airway inflammation, and
demonstrated resistance to GC treatment [32, 33].
Given the known role of NF-xB and AP-1 as
GC-responsive transcription factors, we examined
their transcriptional activity in BMAL1-deficient cells
[34, 35]. RNA-seq analysis revealed that the
transcription levels of NF-xB and AP-1 pathways
were  significantly = upregulated in BMALI-
knockdown cells (Fig 4A-B).

To determine whether BMALL influences GC
responsiveness, we treated BMALIl-knockdown
HBECs with DEX. We found that BMAL1 deficiency
markedly diminished the anti-inflammatory effect of
DEX on IL-25 and TSLP (Fig 4C). These findings
suggest that BMAL1 loss compromises the
anti-inflammatory efficacy of GC treatment.

We further assessed GR transcriptional activity
by quantifying the expression levels of two
well-established GC-responsive genes, glucocorticoid-
induced leucine zipper (GILZ) and FK506 binding
protein 5 (FKBP5). Both genes were markedly
downregulated in BMAL1-deficient cells (Fig 4D). In
addition, the ratio of GR-p to GR-a expression was
significantly increased in BMAL1-knockdown cells,
suggesting an inhibitory shift in GR isoform balance
and reduced GC sensitivity (Fig 4E) [36, 37].

Consistent with transcriptomic  findings,
immunoblotting confirmed elevated protein levels of
phosphorylated NF-xB p65 (p-p65) and cJUN in
BMAL1-deficient HBECs (Fig 4F-I), supporting a role
for BMAL1 in suppressing pro-inflammatory
signaling ~and  maintaining  epithelial GC
responsiveness.

BMALI deletion inhibited the p38MAPK
pathway and reduced GR-Ser211
phosphorylation in HBECs

To determine whether BMAL1 influences GR
activation, we first assessed GR mRNA levels using
RNA-seq, which revealed no significant changes
following BMAL1 knockdown (Fig S2F). Given that
phosphorylation is a key marker of GR activation [34,
35, 38, 39], we used the PhosphoSitePlus® database to
identify Ser211 as the predominant site of GR
phosphorylation, consistent with previous studies
(Fig 5A) [40, 41]. We found that the phosphorylation
of GR at Ser21l1 increased coincided with the
increasing duration of DEX treatment (Fig S3A).
However, subsequent western blot and

6488
immunofluorescence  staining  revealed  that
phosphorylation at GR-Ser211 was markedly

diminished after BMAL1 knockdown (Fig 5B-C),
suggesting that BMAL1 is required for GR activation.

To identify the upstream signaling events
mediating this effect, we utilized the kinase prediction
tool GPS 6.0 to screen for candidate kinases targeting
GR-Ser211 (Fig 5D).

Integrating  these predictions with our
transcriptomic data, we hypothesized that BMALI1
may enhance GR phosphorylation through regulation
of the MAPK pathway (Fig 5E). Among the three
classical MAPK branches, p38MAPK, extracellular
regulated protein kinase (ERK) and cJUN N-terminal
kinase (JNK) [42], only p38MAPK phosphorylation
was significantly diminished in BMALI1-knockdown
cells, whereas ERK and JNK activation remained
unchanged (Fig 5F-G; Fig S3B).

To validate MAPK activity changes, we applied
the MAPK Pathway Activity Score (MPAS), a gene
expression-based metric reflecting MAPK pathway
output [43]. Upon BMAL1 knockdown, MPAS and
downstream transcriptional analyses suggested that
P38MAPK was repressed, whereas the ERK pathway
was activated (Fig S3B, Fig S4A-B). These findings
indicate that BMAL1 supports GR activation by
maintaining p38MAPK signaling, and its loss results
in impaired GR phosphorylation and diminished GC
responsiveness.

Bmall-- mice display GC resistance in the
HDM-induced asthma model

Next, we assessed the efficacy of GC treatment
following BMAL1 deletion in vivo (Fig 6A).
Histological examination revealed that DEX markedly
alleviated airway inflammation, mucus secretion, and
structural remodeling in WT mice. However, these
anti-inflammatory  effects  were  substantially
diminished in Bmall-/- mice (Fig 6B-D).

In addition, the classification of cells in the BALF
revealed that DEX failed to ameliorate EOS and NEU
inflammation in Bmall-/- mice (Fig 6E-F). The levels of
inflammatory factors, including T1 and T2 cytokines,
were not significantly reduced in the BALF of Bmall-/
mice after DEX treatment in contrast to the robust
suppression observed in WT controls (Fig 6G-J).
Immunofluorescence staining revealed a significant
decrease in GR-Ser211 phosphorylation in airway
epithelial cells from Bmall/- mice (Fig 6K).
Collectively, these findings demonstrate BMALLI is
essential for the anti-inflammatory effects of GC
therapy in asthma by sustaining GR phosphorylation.
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BMALI repressed DUSP4 transcription to
regulate p38MAPK signaling

To explore how BMALl1 modulates the
P38MAPK pathway, we examined its regulation of
dual-specificity phosphatases (DUSPs), which serve
as negative regulators of MAPK activity [44]. The
DUSP4 and DUSP6 have been shown to play key roles
in the modulating MAPK pathways [45]. We found
that the transcription levels of DUSPs were
significantly increased in BMAL1l-knockdown cells
(Fig 7A). To further study the transcriptional
regulation of DUSPs by BMAL1, we established a
BMAL1l-overexpressed HBEC line via plasmid
transfection. We found that only DUSP4 was
significantly downregulated after BMAL1
overexpression (Fig Sb).

Western blot results further confirmed that
BMALL1 negatively regulates DUSP4 expression (Fig
7B-C).

To test whether DUSP4 is a direct transcriptional
target of BMAL1, we analyzed the promoter region of
the DUSP4 gene using JASPAR and the NCBI
promoter database, identifying two putative
BMAL1-binding motifs (P1: -1768 to -1777; P2: -1436 to
-1445) (Fig 7D). Chromatin immunoprecipitation
(ChIP) assays confirmed strong BMALI1 enrichment at
the P1 site, with modest, non-significant enrichment
at the P2 site (Fig 7E).

We further constructed the pGL3-DUSP4-WT,
pGL3-DUSP4-Mutl and pGL3-DUSP4-Mut2 plasmids
for the luciferase reporter assay (Fig 7F). The results
revealed that BMAL1 overexpression significantly
reduced DUSP4 promoter activity in luciferase
reporter assays. Mutation of the P1 or P2 binding site
partially restored DUSP4 expression, indicating these
motifs mediate BMALIl-dependent repression (Fig
7G). Moreover, the western blotting results also
suggested that a mutation in the P1 region of DUSP4
reversed the repressive effect of BMAL1 on the
p38MAPK pathway (Fig 7H-I).

Collectively, these findings demonstrate that
BMALL1 directly binds to the DUSP4 promoter and
represses its transcription, thereby sustaining
p38MAPK  activity and  downstream = GR
phosphorylation.

Inhibition of DUSP4 restored GC sensitivity in
BMAL I-deficient airway epithelial cells

To further validate the therapeutic potential of
DUSP4 inhibition in vivo, we administered the DUSP4
inhibitor BCI to Bmall/- mice with HDM-induced
asthma in combination with DEX treatment (Fig 8A).

Histological  analysis revealed that airway
inflammation, mucus production, and remodeling
were significantly alleviated in the BCI + DEX
treatment group compared to DEX monotherapy in
Bmall/- mice (Fig 8B-D). Immunofluorescence
staining further revealed that the levels of
p-GR-Ser211 and p-p38MAPK in airway epithelial
cells were substantially restored in the BCI + DEX
group (Fig 8E-F), indicating functional reactivation of
the p38MAPK-GR pathway in vivo.

Western blot analysis consistently revealed that,
in BMALIl-deficient HBECs, BCl significantly
enhanced p38MAPK phosphorylation and GR-Ser211
phosphorylation relative to DEX monotherapy. (Fig
8G). Similarly, in the SD mouse model, BCI restored
the efficacy of DEX and enhanced the
phosphorylation of p38MAPK and GR-Ser211 (Fig
S6). These data demonstrate that DUSP4 inhibition
can effectively reverse the impaired GR
phosphorylation and p38MAPK activity induced by
BMAL1 loss. Furthermore, immunofluorescence
staining showed higher DUSP4 expression in airway
epithelium from patients with severe asthma
compared with those with moderate asthma (Fig
8H-I), suggesting DUSP4 may contribute to the
pathogenesis and severity of asthma.

Collectively, our findings suggest that
pharmacological targeting of DUSP4 restores GC
responsiveness by reactivating the p38MAPK-GR
axis, offering a potential therapeutic strategy for
managing GC resistance in the context of circadian
disruption.

Discussion

Despite their widespread wuse, GCs are
ineffective in some asthma patients, creating a
considerable clinical problem [3]. While airway
inflammation and GC resistance have been linked to
multiple mechanisms, increasing evidence implicates
circadian rhythm disruption as a contributing factor
[24], yet the molecular link between circadian clock
perturbation and GC signaling remains unclear. In
this study, using BMAL1-knockdown HBECs and a
well-established Bmall knockout mice model [46, 47],
we identify the circadian transcription factor BMAL1
as a critical regulator of GC responsiveness in airway
epithelial cells, acting through a
DUSP4-p38MAPK-GR axis. Our findings showed that
BMAL1 dysfunction exacerbates HDM-induced
airway inflammation and promotes GC resistance by
impairing =~ GR-Ser211 phosphorylation ~ and
downstream anti-inflammatory responses.
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Figure 6. Bmall-- mice display GC resistance in the HDM-induced asthma model. (A) Schematic diagram of the experimental protocol for HDM sensitization,
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Our clinical and animal data support a direct
association between circadian misalignment and
asthma severity. Asthmatic patients with a late
phenotype exhibited poorer disease control and
higher exacerbation rates, correlating with increased
daily GC consumption. In parallel, mice subjected to
sleep deprivation, a model of circadian disruption,
showed  exacerbated = HDM-induced  airway
inflammation, accompanied by downregulation of
BMAL1 in airway tissues. These findings are
consistent with previous studies linking altered
circadian rhythms to asthma exacerbations [48, 49],
and underscore the functional relevance of peripheral
clocks within the airway epithelium [50]. Notably,
BMAL1l was predominantly expressed in airway
epithelial cells and rhythmically regulated under
physiological conditions, but this oscillation was
attenuated following HDM exposure. These findings
indicate that BMAL1 acts as a suppressor of
inflammation associated with asthma, consistent with
previous reports [51, 52].

Mechanistically, we showed that BMALI1
deficiency in airway epithelial cells enhanced
activation of NF-xB and AP-1, key pro-inflammatory
transcription factors whose inhibition represents a
major anti-inflammatory action of GCs|[35].
Importantly, we also observed that BMAL1 deficiency
was associated with elevated T1 inflammatory
cytokines in knockout mice, suggesting a potential
role of BMAL1 loss in driving asthma endotype
switching. A growing number of studies link GC
insensitivity to disturbed GR function [38, 53, 54]. In
BMAL1l-deficient HBECs and mice, GC-mediated
suppression of inflammatory cytokines was
attenuated, and expression of GC-responsive genes
such as GILZ and FKBP5 was diminished, suggesting
impaired GR signaling.

Normal cellular processes and disease
development are influenced by posttranslational
modifications (PTMs), which are one of the most
common types of modification affecting protein
function. PTMs of the GR protein are primarily
regulated by phosphorylation, as stated in previous
studies [19, 21]. Previous studies have indicated that
insufficient phosphorylation of GR significantly
impairs the anti-inflammatory effect of GC,
suggesting that GR phosphorylation is a major cause
of GC resistance [20]. Importantly, BMALI deletion
led to decreased phosphorylation of GR at Ser211,
which is a critical post-translational modification
required for GR activation[40]. These findings
suggest that circadian disruption not only promotes
inflammation but also directly interferes with GC-GR
signaling.

Although MAPK pathways

have been

implicated in GR regulation, their role in GC
resistance is complex. Excessive MAPK activity can
ultimately lead to impaired GR function in severe
asthma and COPD [5, 55, 56]. However, basal
p38MAPK activity is required for GR-Ser211
phosphorylation and GC function [57, 58]. A study
demonstrated that the activation of the MAPK
pathway resulting in increased p-GR-Ser211 levels,
can significantly improve the GC sensitivity in
leukemic lymphoid CEM cells, which are known for
their poor responsiveness to GC [59]. Another study
in asthma revealed that enhancing the
phosphorylation of Ser211 can restore the
responsiveness of airway smooth muscle cells to GCs
[60]. We found that BMAL1 knockdown selectively
suppressed p38MAPK activation without suppressing
ERK or JNK pathways. These effects were associated
with reduced GR phosphorylation and GC
responsiveness, reinforcing the notion that the
p38MAPK pathway plays a dual role in balancing
inflammatory and GC signaling. Interestingly, we also
observed that the ERK pathway, another pathway
associated with asthma, was significantly activated
after BMAL1 knockdown. The significance of the ERK
pathway in circadian disruption-related asthma is
under investigation and will be addressed in our
future studies. Nevertheless, the diverse expression
patterns of MAPKs and the intricate interplay and

regulatory  loops  present  challenges  for
pharmacological interventions.
We further identified DUSP4, a MAPK

phosphatase [44], as a direct transcriptional target of
BMAL1. BMAL1 overexpression suppressed DUSP4
expression, while ChIP and luciferase reporter assays
confirmed BMAL1 binding to the DUSP4 promoter.
Functional studies showed that disrupting the DUSP4
promoter restored p38MAPK phosphorylation in
BMAL1-deficient cells, supporting a mechanistic
model in which BMAL1 maintains basal p38MAPK
activity by repressing DUSP4 transcription.

To validate the therapeutic relevance of this
mechanism, we used the DUSP4 inhibitor BCI in
Bmall-deficient and SD model mice. Remarkably, BCI
combined  with DEX  restored  GR-Ser211
phosphorylation, suppressed airway inflammation,
and reversed GC resistance both in vivo and in vitro.
Consistently, human bronchial biopsy specimens
revealed elevated DUSP4 expression in airway
epithelial cells from patients with severe asthma
compared with those with moderate asthma, further
supporting the clinical relevance of this pathway.

These findings suggest the DUSP4-p38MAPK-
GR axis as a potential therapeutic target for restoring
GC sensitivity in asthma with circadian disruption.
While BCI is currently a tool compound with limited
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specificity and pharmacokinetic properties, our
results lay the groundwork for developing
DUSP4-targeted therapies in SRA.

Limitations

Although targeting the DUSP4-p38MAPK-GR
could be a potential therapy to restore GC sensitivity,
certain limitations of this study should be considered.
For in vitro assays, immortalized monolayer HBEC
cultures were utilized instead of primary
pseudostratified columnar epithelium, which more
closely models airway physiology, inclusive of ciliary
activity and mucus production Field [61].
Additionally, our primary focus was on dysregulated
GC signaling in airway epithelial cells, and our prior
work demonstrated that other immune cells,
specifically innate lymphoid cell type 3 (ILC3) cells, T
helper type 17 (Thl7) cells, and M1l-polarized
macrophages, also play a role in GC resistance during
circadian disruption [61]. Future research will
emphasize a more detailed analysis of the immune
microenvironment, specifically the function of
immune cell subtypes in GC resistance. Despite the
widespread use of the SD-mouse model in circadian
disruption studies, it mostly reflects behavioral
rhythm disturbances and offers an incomplete
representation of central circadian clock dysfunction.
Future studies incorporating SCN-targeted analyses
or clock gene reporter systems may help clarify the
direct role of central clocks in asthma pathogenesis.

Conclusion

In conclusion, our findings provide evidence for
a critical role of the circadian clock in GC resistance in
asthma. Normalizing circadian oscillations is an
important approach for restoring GC sensitivity. In
addition, = combination  therapies  comprising
clock-normalizing agents and other modalities, such
as conventional GC therapy or biologic therapy, may
have either additive or synergistic effects. Based on
our results, we suggest that restoring circadian clock
function may offer a novel therapeutic strategy for
asthma management.

Methods

Clinical data collection from patients with
asthma

Clinical data were collected from patients with
asthma who were admitted to the Department of
Respiratory and Critical Care Medicine, Nanfang
Hospital, Southern Medical University from
September 2023 to September 2024. Diagnosis,
grading and treatment of asthma patients were based
on GINA2023. The demographic and functional

characteristics of all the study subjects are shown in
Table S1. All participants provided informed consent
and independently completed the Munich Time Type
Questionnaire as described by Roenneberg, T.’s study
[62]. The MEQ-SA consists of 19 items evaluating an
individual's preferred timing for sleep and activity,
and participants were classified into as early
chronotype (scores=59) and late chronotype (<41). The
ACT includes 5 items related to asthma symptoms,
activity limitation, and medication use over the past 4
weeks. Total scores range from 5 to 25. According to
GINA2023, patients with ACT scores <19 were
considered to have uncontrolled asthma, while scores
>19 indicated controlled asthma.

Materials and reagents

House dust mites (HDM) were purchased from
ALK-Abell6 A/S. Dexamethasone acetate (53124) was
obtained from Selleck Chemicals (USA). Anti-BMAL1
(14268-1-AP), anti-cJUN (24909-1-AP), and anti-FOS
(66590-1-1G)  antibodies were obtained from
Proteintech Technology (China). Anti-phospho-
GR-Ser211 (4161), anti-GR (3660), anti-phospho-
P38MAPK (4511), anti-p38MAPK (8690), and DUSP4
(5149) and DUSP6 (50945) were purchased from Cell
Signaling Technology (CST, USA). Anti-phospho-
NFxB p65 (sc-136548) and anti-NFxB p65 (sc-8008)
antibodies were obtained from Santa Cruz
Biotechnology (USA). Anti-p-actin (66009-1-1G) and
anti-a-tubulin (11224-1-AP) were used as loading
controls from Proteintech Technology.

Cell culture and transfection

The human bronchial epithelial cell line
(HBE-135, ATCC) was cultured as previously
described [63, 64]. HBECs were treated with DEX
(10pM) for 12 h prior to stimulation with HDM
(400U/mL) for 24 h. For BCI treatment, cells were
pretreated with BCI (2pM, MCE, USA) for 24 h before
DEX stimulation. Transfection of the siRNAs or
plasmids was performed using Lipo3000 and P3000
(Thermo Fisher Scientific). HBECs were transiently
transfected with siRNA or scrambled siRNA negative
control (NC) designed by HanYi Biosciences Inc
(China). After 12 h, the medium was changed for the
following experiments. The siRNA target sequences
used are shown in Table S2. The OE-BMAL1 and
DUSP4 mutant (Mutl and Mut2) plasmids were
designed and purchased from Genechem (China).

Quantitative real-time polymerase chain
reaction (qQRT-PCR)

Total RNA was extracted using TRIzol reagent
following the manufacturer’s protocol.
Complementary DNA (cDNA) was synthesized by
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reverse transcription using the Accurately Biology kit
(AG11706). Quantitative PCR was conducted with
SYBR Master Mix (GDSBio, P2105) on a Bio-Rad
real-time PCR system. Primer sequences for target
gene amplification are listed in Table S3. Relative
mRNA levels were determined using the 2-44Ct
method and normalized to GAPDH.

Western blot

Equal amounts of protein from HBECs were
used for Western blot. Proteins were separated on
SDS-PAGE gels and transferred to nitrocellulose
membranes. After blocking in 5% bovine serum
albumin for 2 h, they were incubated with primary
antibodies followed by fluorescently labeled
secondary antibodies (Invitrogen) and then imaged
using the Li-COR Odyssey system.

Asthma animal model and treatments

Bmall*/~ mice were provided by View Solid
Biotech (China). Bmall~/~ and Bmall*/* mice were
confirmed by genotyping of ear tissue. Genotyping
was performed via PCR using primers OL2646: 5'-
CCACCAAFCCCAFCAACRCA-3;  OL2657:  5'-
ATTCGGCCCCCTATCTTCTGC-3"; and OL278: 5'-
TCGCCTTCTATCGCCTTCTTCTTGACG-3'". The
results of the PCR identification are shown in the
Supplementary Figure (Fig S7A-B). C57BL/6
wild-type mice were purchased from the Laboratory
Animal Center, Southern Medical University. The
mice were maintained on a 12 h light/dark cycle with
free access to food and water. For the experimental
asthma model, mice were injected intraperitoneally
with 100pL allergen mixture containing HDM
(4000U/mice) on day 0 and day 7, and were
challenged by intranasal administration of the 20pL
allergen mixture (400U/mice) daily for 14 days as
described previously [64]. The mice received DEX (1
mg/kg) intraperitoneally 1 h before each HDM
challenge. In the BCI treatment group, mice were
additionally administered BCI (2 mg/kg) via
intraperitoneal injection prior to DEX administration
on each challenge day. All the mice were sacrificed on
day 22 for further analysis. All experiments were
performed in accordance with protocols approved by
the Institutional Animal Care and Use Committee of
Southern Medical University.

Chronic sleep deprivation

The custom-made device (XR-XS108, shxinruan,
China) was used to induce sleep disruption in
rodents. During the sweeping movement, mice were
forced to step over a moving sweeper to remain
awake. SD was induced during a 16-hour cycle from
8:00 am (ZTO) to 12:00 am (ZT16) for 7 or 14 days, and

mice had ad libitum access to food and water.

Immunofluorescence microscopy

HBECs were gently washed with PBS, fixed in
4% paraformaldehyde, permeabilized with 0.3%
Triton-X-100 for 20 min, blocked with 3% BSA for 1 h
at room temperature, and incubated overnight with
primary antibodies at 4°C. Immunodetection was
performed with the following primary antibodies:
anti-phospho-NF-xB p65-Ser536 (1:1000; 3033S, CST),
anti-phospho-GR-Ser211 (1:1500;, 4161, CST),
anti-phospho-p38MAPK (1:500; 4511, CST), anti-cJUN
(1:100, 24909-1-AP, Proteintech). The samples were
subsequently incubated with Alexa Fluor 594 anti-Rat
(1:100; A-21209, Life Technologies), Alexa Fluor 488
anti-mouse (1:100; A-11001, Life Technologies) and
Alexa Fluor 488 anti-Rabbit (1:100; A31628, Life
Technologies) antibodies at room temperature for 2 h.
The nuclei were stained with DAPI (Beyotime) for 5
min. Fluorescence signals were captured with
identical settings across groups, with an exposure
time of 500 ms.

Analysis of bronchoalveolar lavage fluid and
serum

Bronchoalveolar lavage fluid (BALF) samples
were collected by lavaging the right lung with 1.4 mL
PBS. After estimating the total number of cells using a
hemocytometer (Bio-Rad), BALF was centrifuged at
1200 rpm for 10 min, and the cell pellet was stained
with Modified Giemsa (Beyotime) and a total of 200
cells were counted and classified. The concentrations
of cytokines (IL-4, IL-5, IL-13, TSLP, IL-25, IL-33,
IEN-y, IL-6) in the BALF supernatant were measured
using ELISA kits (Cusabio). Blood samples were
collected, centrifuged at 3000 g for 10 min and assayed
for HDM-specific IgE using an ELISA kit (Cusabio).

Histotechnology

Paraffin-embedded lung tissues were cut into
5-um-thick sections, deparaffinized with xylene and
rehydrated with sequential steps in graded ethanol
series (98-95-70%). Lung sections were stained with
H&E (Beyotime), Masson (Solarbio), PAS (Solarbio),
and phospho-GR-Ser211 antibody (1:200; 4161, CST)
respectively and were examined with a digital
camera. Inflammatory infiltration was scored as
follows: 0 for absence of inflammatory cells; 1 for
sparse infiltration; 2 when inflammatory cells formed
a ring one cell layer thick; 3 for rings 2-4 cells thick;
and 4 for rings exceeding 4 cell layers in thickness
[65].

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) experi-
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ments were performed using the BeyoChIP™
Enzymatic ChIP Assay Kit (P2083S, Beyotime)
according to the manufacturer's recommendations.
Chromatin was immunoprecipitated with immuno-
globulin G (2729, CST) or anti-BMAL1 (1:50; 14020,
CST). 2% of the total DNA served as input control.
DNA enrichment in ChIP samples was quantified by
qPCR, with primer sequences detailed in Table S4.

Dual-luciferase assay

The luciferase pGL3 plasmids were transfected
into HBECs and incubated for 48 h. Reporter activity
was quantified using the Dual-Luciferase® Reporter
Assay System (Promega, E2909, China) and
normalized to Renilla luciferase signals.

RNA sequencing and analysis

Total RNA was extracted using TRIzol reagent as
previously described. Polyadenylated RNA was
enriched from 1 pg total RNA with Dynabeads Oligo
(dT) 25-61005 (Thermo Fisher) through two
purification steps. The purified poly(A) RNA was
fragmented at 94°C for 5-7 min using a Magnesium
RNA Fragmentation Module (NEB). First-strand
c¢DNA was synthesized with SuperScript™ II Reverse

Transcriptase (Invitrogen, 1896649), followed by
second-strand synthesis incorporating dUTP using E.
coli DNA polymerase I (NEB, m0209), RNase H (NEB,
m0297), and dUTP solution (Thermo Fisher, R0133).
An A-base is then added to the blunt ends of each
strand to prepare them for ligation to the indexed
adapters. Each adapter contains a T-base overhang for
ligation of the adapter to the A-tailed fragmented
DNA. Single or dual index adapters are ligated to the
fragments and size selection was performed using
AMPureXP beads. After heat-labile UDG enzyme
(m0280, NEB) treatment of the U-labeled
second-stranded DNAs, the ligated products are
amplified by PCR under the following conditions:
initial denaturation at 95°C for 3 min; 8 cycles of
denaturation at 98°C for 15 s, annealing at 60°C for 15
s, and extension at 72°C for 30 s; and then final
extension at 72°C for 5 min. The average insert size of
the final cDNA library was 300 £ 50 bp. Finally, 2x150
bp paired-end sequencing (PE150) was performed on
an Illumina Novaseq™ 6000 (LC-Bio Technology CO.,
Ltd) following the manufacturer's recommended
protocol.

GEO analysis

Datasets (GSE74986) were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/
geo/) in MINIML format. Box plots were generated
using the “ggplot2” and “pheatmap” packages
implemented in R software (version 4.3.0).

Phosphorylation site and kinase prediction

Experimentally validated phosphorylation sites
of GR were identified using PhosphoSitePlus®, a
curated database of post-translational modifications
based on published mass spectrometry and
biochemical data. Potential upstream kinases
targeting GR phosphorylation were predicted with
GPS 6.0 using default parameters, focusing on Ser211
to aid the identification of signaling pathways
potentially regulated by BMAL1.

Bronchial biopsy specimens

Bronchial biopsy samples were collected from
patients with asthma at the First Affiliated Hospital of
Guangzhou Medical University between January 2024
and June 2025. Asthma severity was classified
according to the GINA2023 guidelines, and all
diagnoses and grading were confirmed by associate
chief physicians or above.

Statistical analysis

Prism 9.0 software (GraphPad) was used for data
analysis. All experiments were conducted with at
least three independent replicates. Student's t-test was
used to analyze differences between 2 groups, and
one-way ANOVA was used to compare differences
between more than 2 groups. P values less than 0.05
were considered statistically significant.
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