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Abstract

Muscle-invasive (M) urothelial carcinoma (UC) is a clinically challenging malignancy with a poor
prognosis. Understanding the cellular dynamics that drive UC progression is critical for the development
of optimized therapeutic strategies. Through integrative analysis of large-scale single-cell transcriptomic
datasets from non-muscle-invasive (NMI) and M| tumours and validation with spatial transcriptomic
datasets, we systematically characterized immune cell dynamics and cancer cell plasticity during UC
progression. Our analysis revealed an immunosuppressive tumour microenvironment and a subset of
cancer cells with upregulated major histocompatibility complex Il (MHC-II) expression in M| tumours.
Notably, MHC-II* cancer cells were induced by interferon-y signalling, as confirmed through in vitro
experiments, and exhibited phenotypic alterations characterized by enhanced proliferative and migratory
capacities. Furthermore, MHC-II" cancer cells spatially colocalized with CD8* T cells, regulatory T cells,
and SPP1* macrophages, where they engaged with inhibitory receptors on these immune cells, promoted
CD8" T cell exhaustion and facilitated immune evasion.

Keywords: Urothelial carcinoma, Single-cell RNA sequencing, Cellular heterogeneity, MHC-II molecules, Muscle invasion,
Immunosuppressive microenvironment

Introduction

Urothelial carcinoma (UC), a malignancy  similarities and common risk factors, such as

originating in the urothelium, is one of the most
prevalent genitourinary cancers [1]. Approximately
90-95% of UC cases arise in the bladder, while the
remaining 5%-10% occur in the upper urinary tract
(renal pelvis and ureter) [2]. Although urothelial
carcinoma of the bladder (UCB) and upper tract
urothelial carcinoma (UTUC) share histologic

smoking, phenacetin use, and occupational exposure
[3, 4], omics analyses have revealed distinct molecular
profiles [5]. For example, UTUC is characterized
predominantly by a luminal papillary phenotype and
exhibits a T-cell-depleted immune microenvironment
[6, 7]. Furthermore, patients who progress to
muscle-invasive (MI) UC have significantly worse

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21

6650

survival outcomes than those with non-muscle-
invasive (NMI) tumours, a pattern consistent with
that of both UCB and UTUC [8]. Therefore,
clarification of the mechanisms underlying UC
progression to MI cancer is critical. Current
biomarkers of tumor progression are associated with
cell cycle regulation, MAPK signalling, apoptosis,
chromatin stability, and the DNA damage response
[9]. However, most of these biomarkers were
identified through omics-based risk stratification or
molecular subtyping, which limits insights into the
specific contributions of certain cell types to tumour
progression.

Single-cell RNA sequencing (scRNA-seq) has
emerged as a powerful tool for elucidating cellular
heterogeneity, differentiation  trajectories, and
intercellular =~ communication. = Recent  studies
leveraging this technology have provided critical
insights into intratumoral heterogeneity within UC,
and have identified key cell types implicated in
tumorigenesis and progression, including cytotoxic
CD4* T cell subsets, invasive cancer cell
subpopulations, and cancer-associated fibroblasts
[10-15]. Nevertheless, systematic comparisons of UC
at single-cell resolution remain limited, particularly in
the following contexts: (1) direct molecular contrasts
between UCB and UTUC; (2) differences between
NMI and MI UC; and (3) variations across distinct
molecular subtypes of UC.

In this study, we conducted an integrated
analysis combining in-house and publicly available
scRNA-seq datasets to systematically characterize
cellular heterogeneity within the UC tumour
microenvironment, with a specific focus on
delineating both shared and distinct molecular
features between UCB and UTUC at single-cell
resolution. Furthermore, we  performed a
comprehensive investigation into the cellular and
molecular mechanisms that drive UC progression to
MI cancer, which was supported by spatial
transcriptomic validation.

Methods and Materials

Sample collection and online dataset
acquisition

Four UTUC samples were obtained from four
patients who underwent laparoscopic radical
nephroureterectomy (RNU) at Peking University First
Hospital. Pathological analysis confirmed that two
patients had NMI ureteral UC, while the remaining
patients had MI UC of the renal pelvis and ureter,
respectively. These four UTUC samples were
subjected to spatial transcriptomics sequencing. In
addition, two normal ureteral samples were collected

from two patients who underwent ureteral
reconstruction at the same institution and were
submitted for scRNA-seq. Samples were collected
after written informed consent was obtained from all
patients. The study was approved by the Biomedical
Research Ethics Committee of Peking University First
Hospital (No. 2022[Yan200]).

ScRNA-seq data of 18 tumor tissues (Table S1),
including eight UCB and ten UTUC cases, as well as
three samples of adjacent normal bladder tissues,
were obtained from Chen et al. [12] and Liang et al.
[13] under the accession code HRAO000212 and
HRAO001867, respectively, in the Genome Sequence
Archive (GSA) for Human. Spatial transcriptomics
data of four UCB tissues (Table S2) were retrieved
from Gouin et al [16] under the accession number
GSE171351 in the Gene Expression Omnibus (GEO).
Additionally, bulk RNA-seq data for NMI UCB
(n=477) were downloaded from the European
Genome-Phenome Archive (EGA) (accession ID
EGADO00001006656) [17]. Bulk RNA-seq data for
muscle-invasive UCB (n = 431) were obtained from
The Cancer Genome Atlas (TCGA) database. Bulk
RNA-seq data for metastatic UC (n=348) were
retrieved from the IMvigor210 cohort. In addition, we
generated an internal transcriptome sequencing
cohort, IUPU-UC, comprising 41 samples (Figure 1A),
the detailed information of which is provided in Table
S3.

Single-cell suspension preparation and
scRNA-seq

The fresh ureteral mucosal tissues of two
patients were stored in the MACS® Tissue
Preservation Solution (Miltenyi Biotec, Germany) on
ice within 30 minutes after surgery. After they were
transported to the laboratory, single-cell suspensions
were prepared through a combination of mechanical
and enzymatic dissociation. The cell suspension was
subsequently processed using the Single-Cell 3'
Library and Gel Bead Kit V3.1 (10x Genomics,
1000075) along with the Chromium Single Cell B Chip
Kit (10x Genomics, 1000074). In accordance with the
manufacturer’s instructions, the suspension was
loaded onto a Chromium single-cell controller (10x
Genomics) to generate the cDNA library. Finally,
c¢DNA libraries were prepared and sequenced on an
[llumina NovaSeq 6000 platform using a paired-end
150 bp (PE150) reading strategy.

scRNA-seq data processing, integration and
clustering

Standard pipelines of the Cell Ranger Single-Cell
toolkit (v7.0.0, 10X Genomics) were used to process
FASTQ files of both in-house and online public
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samples to produce gene expression matrices based
on the human reference genome (GRCh38-2020-A).
The Seurat R package (v4.4.0) was used to
subsequently  analyse the scRNA-seq data.
Low-quality cells with fewer than 200 or more than
8000 expressed genes, and cells with more than 10%
mitochondrial RNA content were filtered out and
removed. The DoubletFinder [18] R package (v2.0.3)
was used to remove potential doublets, with an
assumed doublet rate of 0.075. The SCTransform
method was applied to normalize and stabilize the
variances of the scRNA-seq datasets for each
individual sample, and regression accounted for the
mitochondrial and ribosomal contents. All individual
samples were integrated by using the reciprocal
principal component analysis (PCA) pipeline to
eliminate batch effects. We subsequently identified
the top 2,000 highly variable genes for PCA, after
which the top 40 principal components were selected
for uniform manifold approximation and projection
(UMAP) dimension reduction. Clustering was
performed using shared nearest-neighbour graph
construction (FindNeighbors) followed by the
FindClusters function, which allowed a range of
resolutions between 0.5 and 2. Analysis of
differentially expressed genes (DEGs) was conducted
across clusters generated at a resolution of 1 using the
Wilcoxon rank sum test and the “FindAllMarkers”
function. The major cell types were assigned to each
cluster were related to the expression patterns of the
canonical marker genes. For each sample, the
proportion of each cell type was calculated by
dividing the number of cells of that type by the total
number of cells and multiplying by 100 to obtain a
percentage.

Malignant cell identification based on inferred
CNV

Malignant cells were identified among epithelial
cells in tumour samples using the inferCNVpy

algorithm (version 04.2;
https:/ / github.com/icbi-lab/infercnvpy). The
function infercnvpy.tlinfercnv was applied to

immune cells as normal references, to infer copy
number variation (CNV). Subsequent dimensionality
reduction was performed using PCA, followed by
clustering on the basis of CNV profiles. The function
infercnvpy.tlLumap was used to visualize CNV
patterns. The CNV scores for each cell were calculated
using the cnv.tl.cnv_score function. Cells were
deemed malignant if they met the following criteria:
(i) they demonstrated the ability to form separate
clusters, and (ii) they had higher CNV scores than
those of reference cells or known normal cell types.

Defining meta-programs of malignant cells
using cNMF

To capture tumour heterogeneity, we employed
nonnegative matrix factorization (NMF) in the
malignant cells of each sample. NMF was performed
for each sample using the consensus NMF (cNMF)
(v.1.3)  (https://github.com/dylkot/cNMF).  This
algorithm decomposes a single-cell count matrix (N
cells x G genes) into two nonnegative matrices: a gene
expression program matrix (K x G) and a program
usage matrix (N x K), which elucidate the
contribution of individual genes to each program and
the cell-specific patterns of program usage. The
parameter K represents the number of gene
expression programs to be inferred. First, we
performed data preprocessing to filter out
mitochondrial and ribosomal genes. Subsequently,
cNMEF was performed with K values ranging from 4 to
12, using 200 independent replicates for each value to
ensure robust results, thereby generating 72 programs
per sample. Programs that recurred across different K
values and samples were defined as robust NMF
programs according to the method outlined by Gavish
et al. [19]. Ultimately, a total of 133 robust NMF
programs were identified.

We next clustered the robust NMF programs to
identify the meta-programs (MPs) on the basis of
similarity (Jaccard index), which was calculated by
the iteratively selection of robust programs according
to gene overlap [19]. Each MP consists of the top 30
genes with the greatest overlap across programs. The
final MPs were obtained after those that contained
programs from only a single sample were excluded.
We subsequently annotated the MPs by assessing
their enrichment in functional gene sets, primarily
using gene sets from MsigDB, Hallmark, and
CancerSEA [20].

Cell type distribution analysis

To assess the distribution of cell clusters across
different phenotypic states, we quantified the relative
abundance of each cluster within the total cell
population or among major cell types in samples
categorized by pathological conditions. To determine
the degree of enrichment or depletion of specific cell
clusters in relation to the phenotypic context, we
computed the ratio of observed to expected cell
counts (Ro/e) for each tissue type and phenotype. The
expected cell numbers for each cell cluster were
obtained using the STARTRAC-dist index through the
X2 test [21]. A Ro/e value greater than 1 was indicated
as enrichment of a cell subset within a particular
phenotype, whereas a value less than 1 indicated
depletion.
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Cell subcluster identification

The major cell lineages, including T cells, NK
cells, myeloid cells, fibroblasts, and endothelial cells,
were then isolated for subsequent reclustering
analysis. For each cell lineage, the harmony algorithm
(v0.1.0) was employed to mitigate potential batch
effects.  Following  batch  effect  correction,
dimensionality reduction, graph-based -clustering,
and UMAP visualization were performed. DEGs for
each subcluster were identified wusing the
“FindAllMarkers” function in Seurat with default
parameters. Cell subclusters were subsequently
annotated according to the the expression profiles of
DEGs and canonical marker genes. T cells and NK
cells were reclustered and annotated on the basis of
function-associated signatures according to previous
studies [13, 22], and were further validated using the
TCellSI [23] method. Macrophage polarization was
assessed by calculating M1 and M2 polarization gene
signature scores (Table S4), as defined by Liu et al.
[24]. The characterization of endothelial cell
phenotypes was performed using gene signatures
(Table S4) specific to tip and stalk cells [25]. Per-cell
scores were calculated using Seurat’s
AddModuleScore function, which computes the
average expression of gene signatures relative to
control genes, enabling quantification across cell
subclusters.

Transcriptomic molecular subtypes of Ml UC

The pathological classification of NMI and MI is
based on the diagnosis provided by the pathologists.
Bulk RNA-seq samples from patients with MI UC
were further classified into luminal and basal
phenotypes according to the BASE47 gene set
(bladder cancer analysis of subtypes by gene
expression) (Table 54) [26], and this classification was
subsequently validated using the BLCAsubtyping
software (v2.1.1; available at https://github.com/
cit-bioinfo/ BLCAsubtyping). We retrieved the gene
expression matrix for thirty-seven bladder cancer cell
lines from the Cancer Cell Line Encyclopedia (CCLE)
database (https:/ / sites.broadinstitute.org/ccle/).
These cell lines were subsequently classified into
luminal and basal phenotypes using the same method
applied to the bulk RNA-seq data. For scRNA-seq and
spatial transcriptomics data from patients with MI
UC, we generated pseudobulk data by aggregating
expression profiles within each sample, followed by
categorization into luminal and basal subtypes using
the same classification approach. Furthermore, we
calculated basal and luminal signature scores for all
the scRNA-seq samples using the BASE47 gene set
and the AUCell algorithm, which ranks gene
expression per cell and computes an AUC score for

each gene set. Per-sample scores were obtained by
averaging the AUC scores across all cells in each
sample and were used for subsequent correlation
analyses.

Cell type deconvolution in bulk RNA-seq data

The BayesPrism algorithm [27] was used to
investigate the cell type abundance in the bulk
RNA-Seq data. In comparison to CIBERSORTX,
BayesPrism integrates both a deconvolution module
and an embedding learning module that employs the
expectation maximization technique to accurately
estimate tumour composition by linearly combining
malignant gene programs. This approach enhances
the precision of tumour microenvironment
characterization [27]. Annotated immune cell
subclusters and cancer cell subsets served as reference
cell type-specific expression profiles for the
deconvolution of bulk RNA-seq data from the
TCGA-BLCA cohort and the UROMOL 2020 [4]
cohort. The cell type abundances were subsequently
compared across tissue subtypes and molecular
subgroups, after which a correlation analysis were
performed to explore the relationships among the
identified cell subclusters.

Pseudotime analysis

We used the R package monocle3 (v1.3.1)
(https:/ / cole-trapnell-lab.github.io/monocle3/)  to
perform pseudotime analysis, and aimed to
investigate the differentiation trajectories of T-cell and
macrophage subsets. To define the initial point of the
pseudotime trajectory, we utilized CytoTRACE [28] to
estimate the differentiation potential of individual
cells. Cell subsets with higher CytoTRACE scores,
which are indicative of a lower degree of
differentiation, were considered as the root cells for
the pseudotime analysis. Subsequently, we visualized
both cell density and gene expression patterns along
the pseudotime axis using the R packages ggridges and
ClusterGVis
(https:/ / github.com/junjunlab/ClusterGVis).

Transcription factor analysis

To evaluate transcription factor activity within
cancer cell subsets, we performed single-cell
regulatory network inference and clustering
(SCENIC) analysis using the pySCENIC package
(v0.121) [29] in Python (v3.9) with default
parameters. The coexpression network was
constructed using GRNboost2, and regulons were
identified through RcisTarget. The activity of each
regulon in individual cells was quantified using the
AUCell algorithm, which provides scores that reflect
the transcriptional activity across the cellular
landscape.
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Cell-cell communication analysis

We utilized CellPhoneDB (v5.0)
(https:/ / github.com/ventolab/CellphoneDB) to infer
potential ligand-receptor interactions between cancer
cell subsets and immune cell subsets within the
tumour microenvironment. This updated toolkit
leverages a comprehensive, manually curated
database of receptors, ligands, and their interactions,
thereby improving the precision of cell-cell
communication analysis. To compare cell-cell
interactions between the cellular components of the
MI and NMI groups, we adopted the MultiNicheNet
cell-cell communication analysis framework (v2.0.0)
(https:/ / github.com/saeyslab/multinichenetr),
which is specifically designed for multi-sample,
multi-condition scRNA-seq datasets. Ligand-receptor
pairs exhibiting statistically significant interactions (P
value < 0.05) were identified and extracted for further
visualization.

Survival analysis

The bulk RNA-seq data from the TCGA-BLCA,
IMvigor210 and in-house IUPU-UC cohort were used
for survival analysis. Cell type-specific gene
signatures were defined on basis of the top 50 marker
genes identified using the COSine similarity-based
marker Gene identification (COSG) method [30]. The
signature score for each cell type was computed, and
patients were stratified into high- and low-signature
score groups according to an optimal cut-off value
determined by the survminer R package (v0.4.9).
Kaplan-Meier = (KM) survival curves  were
subsequently generated using the survival R package
(v3.2.11) to assess the prognostic significance of the
identified cell type signatures.

Tissue preparation and data preprocessing for
spatial transcriptomics

Tissue sections from four UTUC samples were
processed according to the tissue preparation guide of
Visium Spatial Gene Expression tissue preparation
guide for fresh-frozen tissues (10x Genomics,
CG000636). The tissue sections were mounted onto
Visium Spatial Tissue Optimization Slide and
subjected to methanol fixation and hematoxylin—eosin
staining. The optimal permeabilization time was

determined and applied to facilitate efficient
transcript capture. Barcoded c¢DNA synthesis,
amplification, and library construction were

conducted using Visium Spatial Gene Expression
Reagent Kits (10x Genomics). Finally, sequencing was
conducted on an Illumina NovaSeq 6000 platform in
150 bp paired-end mode.

Visium raw sequencing data were processed
using Space Ranger (v1.3.0, 10x Genomics) to generate

gene expression count matrices. Reads were aligned
to the hg38 (GRCh38-2020-A) human reference
genome and mapped against the corresponding probe
set reference for humans. After preprocessing, spots
with fewer than 500 counts, or fewer than 300
measured genes were removed. Additionally,
mitochondrial genes were filtrated for downstream
analysis. SCTransform-based normalization,
dimensional reduction and clustering analysis were
conducted using the Seurat R package (v4.4.0) under
default parameters.

Deconvolution and colocalization analysis of
Visium data

To infer the cellular composition of each Visium
spot, we employed cell2location (v0.1.3) [31] for cell
type deconvolution. Prior to deconvolution, a
permissive gene selection was performed using
default parameters to define reference cell type
signatures from the scRNA-seq data, and model
training was configured for 500 epochs. The
cell2location model was subsequently trained for
30,000 epochs, and the 5% quantile of the estimated
posterior distribution of cell abundance was extracted
and stored in an AnnData object. To delineate cellular
niches across tissue sections, we applied the NMF
function of cell2location to identify distinct cellular
compartments. Colocalization analysis was conducted
using the run_colocation function with default
settings, and the optimal number of factors was
determined manually the basis of biological
relevance. We used mistyR (version 1.8.0) [32] to
determine the importance of the intrinsic view within
a spot by modelling cell type cell2location estimations
of the NMI and MI phenotype slides. Pairwise
Kullback-Leibler (KL) divergences between cell types
were calculated using a symmetric KL function [33].
To assess the statistical significance of spatial
colocalization, a null distribution of KL values was
generated by randomly sampling 80% of the spots
from each cell type and computing the KL divergence
over 1000 permutations. Empirical p-values were
calculated as the fraction of null KL values exceeding
the observed KL divergence. The differences in KL
values compared with the observed values among cell
types are illustrated as heatmaps. In addition, the
observed KL values were plotted against the null
distribution using density plots, with cell types
coloured for clarity.

Inference of pathway activity using PROGENYy

To infer signalling pathway activities in cancer
cell subsets, we applied the PROGENy (v1.28.0) R
package [34] with default parameters. The pathway
enrichment scores were averaged and analysed across
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pathological and molecular subgroups to identify
pathway-specific differences. For the Visium data, we
used the multivariate linear model (mlm) method
implemented in the decoupleR package (v1.9.2) [35] to
estimate pathway enrichment scores. Specifically, for
each Visium spot, pathway activity was inferred
according to the top 500 genes responsive to the
PROGENYy model, ranked by statistical significance (p
value).

Multiplex immunofluorescence staining

Formalin-fixed,  paraffin-embedded  (FFPE)
tissue sections from UC patients were deparaffinized,
rehydrated, and rinsed with distilled water. Antigen
retrieval was performed using citrate buffer.
Multiplex  immunofluorescence  staining  was
conducted with a fluorescent immunohistochemistry
kit (Beyotime), according to the manufacturer’s
protocol. Primary antibodies targeting pan-CK,
HLA-DRA, and CD68 (Proteintech) were applied to
the sections, which were subsequently incubated
overnight at 4 °C. The slides were then treated with
HRP-conjugated secondary antibodies (mouse &
rabbit) for 10 minutes at room temperature, followed
by tyramide signal amplification. After completing
antibody staining was complete, the cell nuclei were
counterstained with DAPI. The slides were scanned
using a Zeiss LSM900 confocal microscope, after
which the images were further processed using
SlideViewer (v2.8) software.

Cell lines culture and treatment

The human bladder cancer cell lines T24 and
5637 were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). Both cell
lines were cultivated in RPMI-1640 medium
supplemented with 10% foetal bovine serum (FBS)
and 1% penicillin-streptomycin. Cultures were
incubated in a humidified atmosphere containing 5%
CO, at 37 °C. For experimental treatments, T24 and
5637 cells were exposed to recombinant human IFN-y
(MedChemExpress) at concentrations of 0, 5, 10, and
20 ng/mL for 72 hours and maintained at 37°C. To
completely block the JAK signalling pathway, cells
were pretreated with the selective JAK1/2 inhibitor
ruxolitinib (MedChemExpress, 10 and 20 pM) for 1
hour prior to IFN-y stimulation and were exposed to
the inhibitor throughout the 72-hour treatment
period.

Lentiviral transduction and screening for
stable cell lines

The HLA-DRA-overexpression (HLA-DRA-OE)
and control lentiviral vectors were constructed using
a Lentiviral Packaging Kit (Yeasen). Lentiviral

transduction was performed according to the
manufacturer’s instructions to generate
HLA-DRA-OE and control (HLA-DRA-NC) cell lines.
Cells with stable expression were selected by
culturing in medium supplemented with 10 pg/mL
blasticidin (Yeasen) for two weeks.

Western blot analysis

Cells were cultured in 10-cm plates and lysed in
RIPA complete lysis buffer (Beyotime) for total
protein  extraction. After quantification and
denaturation, 20 pg of proteins were separated by 8-
12% SDS-PAGE and transferred onto a PVDF
membrane (Millipore). The membrane was blocked
with 5% bull serum albumin and incubated with
primary antibodies (Cell Signaling Technology) (Jak1,
1:1000; phospho-Jak1(Tyr1034/1035), 1:1000; Statl,
1:1000; phospho-Statl (Tyr701), 1:1000; HLA-DRA,
1:10000, B-tubulin, 1:5000) overnight at 4 °C, followed
by by incubation with secondary antibodies. Protein
signals were detected using the BeyoECL Plus
chemiluminescent reagent (Beyotime).

Proliferation and migration assay

Cell Counting Kit-8 (CCK-8, Beyotime) and
colony formation assays were used to assess cell
proliferation. HLA-DRA-OE and control T24 and 5637
cells (1,000/well) were seeded in 96-well plates and
cultured. Cell viability was measured at 0, 1, 2, 3, 4,
and 5 days by adding 10 pL CCK-8 solution to 90 pL
medium, followed by incubation at 37 °C for 2 h and
absorbance detection at 450 nm using a microplate
reader (Bio-Rad). For colony formation, 1,000 cells
were seeded into six-well plates and cultured until
visible colonies formed. Colonies were fixed in 4%
paraformaldehyde (PFA) for 15 min and stained with
0.1% crystal violet for 15 min. Colonies containing >50
cells were counted for analysis.

Wound-healing assay was applied to evaluate
cell migration. Cells were seeded in six-well plates
and grown to 80-90% confluence. A linear scratch was
made using a sterile pipette tip, and cells were
cultured in medium containing 2% FBS for 24 h.
Wound closure was imaged at 0 and 24 h with a
digital microscope, and migration distance was
quantified using Image].

Transwell assays were further used to assess cell
migration and invasion. A total of 2 x 10* T24 cells or
5 x 10* 5637 cells in 100 pL serum-free medium were
seeded into the upper chambers (8 pm pore size,
Corning) precoated with Matrigel (1:8 dilution, 50
pL/well) for invasion assays or left uncoated for
migration assays. The lower chambers contained 500
pL medium containing 10% FBS. After incubation at
37 °C for 24-48 h, the migrated or invaded cells were

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21

6655

fixed in 4% PFA and stained with 0.1% crystal violet
before visualization and quantification.

Statistical analysis

All  the statistical analyses and data
visualizations were performed using R (v4.3.2).
Differences between two independent groups were
assessed using the Wilcoxon rank-sum test for
nonparametric data and Student’s t test for normally
distributed data. Comparisons among multiple
groups were conducted using one-way ANOVA,
followed by post hoc tests where appropriate. All
p-values were two-sided, and p < 0.05 considered
indicated statistical significance.

Results

Single-cell transcriptomic atlas of UC and
normal samples

To determine the heterogeneity within UC and
its potential mechanisms of progression, we analysed
the single-cell transcriptomic profiles of ten UTUC
samples, two normal ureter tissue samples, eight UCB
tissue samples, and three adjacent bladder mucosa
tissue samples (Figure 1A and Table S1). We classified
the MI UC samples into luminal and basal phenotypes
according to the BASE47 gene sets [26] (Figure S1A
and S1B, Table S4). After stringent quality control and
dimensionality reduction, we obtained transcriptional
profiles of a total of 136,687 cells, which were broadly
categorized into nine major cell types on basis of the
expression of canonical marker genes; cell types
included epithelial cells, fibroblasts, endothelial cells,
T cells, NK cells, B cells, plasma cells, myeloid cells
and mast cells (Figure 1B and 1C). These cell types
were common between the pathological and
molecular subtypes, although their proportions
varied across these subtypes (Figure 1D). Stromal
cells, including fibroblasts and endothelial cells, were
significantly depleted in both NMI and MI tumour
samples (Fig. 1E and 1F). The abundance of
tumour-infiltrating T cells was significantly greater in
the MI samples than in the NMI samples, with the
most pronounced increase observed in the MI basal
subgroup. These findings suggest a potential
association between MI progression and enhanced
T-cell infiltration. Additionally, the proportions of
epithelial cells were elevated in tumour samples
compared with normal tissues but were notably
reduced in the MI basal subgroup (Figure 1D, 1E and
1F).

We further explored single-cell transcriptomic
differences within the UTUC and UCB ecosystems.

Our analysis revealed a similar distribution of major
cell types across both tumour types (Figure 1F, S1C),
although the proportions of certain cell types varied.
Specifically, mast cells and endothelial cells were
more abundant in UCB, whereas myeloid and B cells
were enriched in UTUC (Figure S1D). DEG analysis of
major cell types revealed that many genes, including
mitochondrial genes and those that encode noncoding
RNAs, were significantly differentially expressed
between UCB and UTUC (Figure S1D). Hallmark
pathway enrichment analysis, which focused on cell
types with notable differences, revealed several
tumour-associated pathways, including oxidative
phosphorylation and TGF-beta signalling in mast cells
(Figure S1F), protein secretion in endothelial cells
(Figure S1G), and angiogenesis in B cells (Figure S1H).
Whether these pathways represent true differences
between UTUC and UCB requires validation.
Therefore, further investigations incorporating
cohorts with larger sample sizes and functional
validation are necessary to clarify the biological
relevance of these findings.

Malignant cells in Ml tumours exhibit an
enhanced immune-related features

Clusters of epithelial cells in tumour samples
were highly dispersed, which indicates significant
intertumoral  heterogeneity  (Figure 2A). We
distinguished 49,698 cancer cells from epithelial cells
based on the basis of the inferred CNV scores (Figure
2B, 2C, S2A, S2B). A consensus NMF algorithm was
then applied to identify gene programs preferentially
expressed in cancer cells across tumour samples,
which resulted in 133 robust NMF programs.
Clustering analysis retained seven meta-programs
(MP1-7) that represent common expression patterns
(Figure 2D). Each MP was characterized by a distinct
signature of 30 genes (Table S5, and Figure S2C) and
was annotated according to functional enrichment
analysis (Figure 2E, S2D). The identified MPs are
associated with various biological processes,
including oxidative phosphorylation and metabolism
(MP1), stress and hypoxia responses (MP2 and MP7?),
urothelium-related features (MP3 and MP6), and cell
cycle/proliferation (MP4) (Figure 2E). MP5,
characterized by immune-related features, includes
genes involved in MHC-II antigen presentation (e.g.,
CD74, HLA-DRA, and HLA-DPA1) and the interferon
response (e.g., [IFITM3 and IFI6). Notably, the majority
of genes in MP5 were highly expressed in the MI
group, particularly in MI basal phenotype samples
(Figure 2F).
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Figure 1. Single-cell transcriptomics reveal the cellular heterogeneity of UC. (A) Schematic illustration of sample collection and analysis workflow. (B) UMAP plot of 136,687
single cells, colored by nine major cell types. (C) Violin plot showing representative marker genes for the major cell types. (D) Cell fraction (as percentages) and cell number per
group, stratified by molecular subtype (left) and tissue type (right). (E) Cell density plots stratified by molecular subtype. (F) Distribution of the ratio of observed to expected cell
numbers (Rore) for each cell type across tissue type (left) and molecular subtype (right), as estimated by the STARTRAC-dist index. A Ro/e value > 1 indicates enrichment of a given
cell type, whereas a Ro/e value < | indicates depletion. Abbreviations: UTUC, upper tract urothelial carcinoma; UN, normal ureteral mucosa; UCB, urothelial carcinomas of the
bladder; BN, normal bladder mucosa; MP, meta-program; IF, immunofluorescence.
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Figure 2. Identification and functional analysis of intratumoral malignant meta-programs in UC. (A) UMAP plot showing nine cell types identified from tumor samples. (B) UMAP
plot highlighting copy number variation (CNV) scores across all cells. (C) UMAP visualization of CNV status across all cells. (D) Heatmap showing the Jaccard similarity index of
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robust NMF programs, hierarchically clustered into seven meta-programs (MPs). (E) Heatmap illustrating biological pathway enrichment of the seven MPs. (F) Bubble plot
displaying the expression levels of 30 signature genes associated with MP5. (G) Bar plots comparing the scores of the seven MPs across different groups. Colored dots represent
individual samples. Statistical significance is indicated by asterisks (*P < 0.05, **P < 0.01, **P < 0.001), and “ns” indicates no statistical difference. (H) Spearman correlations
between MP5 scores and T-cell proportions in tumor samples. (I, J) Spearman correlations between MP5 scores and phenotype signature scores in tumor samples: (I) luminal
scores; (J) basal scores. (K) Bar plot comparing MP5 scores across three immune subtypes (Inflamed, Excluded, and Desert) in the IMvigor210 cohort. (L) Spatial feature plots
showing H&E-staining images (top) and MP5 signature scores (bottom) in tumor tissue sections across molecular subtype. Specifically, the UCBO1 sample was obtained from the

publicly available dataset (GSE171351).

To investigate the relationships between MPs
and tumour progression as well as tissue-specific
features, we calculated the MP signature scores across
all cancer cells and compared the average scores
between tumour sample groups. Tumours in the MI
group had significantly higher MP5 scores (P<0.01)
(Figure S2E), particularly in MI basal samples
(P<0.001) (Figure 2G), which suggests that the MP5
signature is associated with tumour progression.
MP6, which is linked to luminal phenotype related
genes (e.g., SPINKI, UPK1, and UPK3), had
significantly lower scores in MI basal samples
(P<0.05) (Figure S2C and Figure 2G). However, no
significant difference in MP scores was observed
between UTUC and UCB (Figure S2F). Additionally,
we found that the MP5 score were positively
correlated with T-cell ratio (R=0.55; P=0.019), the
myeloid cell ratio (R=0.62; P=0.0062), and the basal
phenotype signature score (R=0.51;, P=0.029), but
negatively correlated with the luminal signature score
(R=-0.64; P=0.0041) (Figure 2H-2I, and Figure
S2G-S2H). MP5  scores  were  highest in
immune-inflamed  tumours and lowest in
immune-desert tumours of the IMvigor210 cohort
(P<0.001) (Figure 2K). Spatial analysis further
revealed that most spots in the MI basal UC samples
had high MP5 scores, wheras those in the NMI and MI
luminal UC samples had lower scores (Figure 2L).

Expansion of immunosuppressive T cells
during UC progression

Tumour-infiltrating lymphocytes play dual roles
in the tumour microenvironment: they mediate
tumour cell recognition and cytotoxicity, thereby
enhancing anti-tumor immunity, while specific
subsets, such as regulatory T cells (Tregs), contribute
to immune suppression and tumor immune evasion.
We reclustered T cells and natural killer (NK) cells
into ten major subtypes (Figure 3A) and annotated
these subtypes on basis of reported function-
associated signatures (Figure 3B). The subtypes
included three CD4* T cell clusters (CD4T-C1-CCR?7,
CD4T-C2-IL17A, and CDA4T-C3-CXCL13), two Treg
cell clusters (Treg-C1-SELL and Treg-C2-TNFRSF9),
three CD8* T «cell clusters (CD8T-C1-GZMK,
CDS8T-C2-IFNG, and CDS8T-C3-LAG3) and two NK
cell clusters (NK-C1-FCGR3A and NK-C2-XCL1).

Additionally, we used the signatures of TCellSI
[23] to assess the T-cell states, and reported that the

regulatory signature scores of the Treg-C2-TNFRSF9
subtype were the highest (Figure S3A, Table S4). The
Treg-C2-TNFRSF9 subtype was enriched in MI
tumour samples, while the CD8T-C1-GZMK and
CD8T-C2-IFNG clusters were predominantly found in
NMI tumours and normal samples (Figure 3C and
3D). Pseudotime trajectory analysis revealed the
diversification and developmental dynamics of CD8+
and CD4* T cells (Figure 3E and 3F). The
CD8T-C3-LAG3 subpopulation, characterized by high
expression of exhausted markers such as PDCDI,
HAVCR?2, and LAG3 (Figure 3B), was located at the
terminal end of the pseudotime and was enriched in
pathways related to the PD-1 checkpoint, type II
interferon production, and T-cell negative regulation.
According to the results of Ry/e distribution analysis,
the CD8T-C3-LAG3 subtype was found to be
preferentially enriched in MI basal tumour samples
(Figure 3D). The Treg-C2-TNFRSF9 subtype, which
highly expresses costimulatory signatures (TNFRSF9,
TNFRSF18, ICOS, and CTLA4), was found to be
associated with the regulation of immune effector
pathways and the Rapl signalling pathway. These
findings suggest that the immunosuppressive
microenvironment may drive tumour progression
towards MI. To validate the T-cell states across
different tumour subgroups in the above analysis, we
used the deconvolution algorithm BayesPrism [27] to
analyse T-cell subtype abundance in bulk RNA
sequencing data from the TCGA-BLCA and the
UROMOL 2020 cohort, as well as the in-house
IUPU-UC cohort. Interestingly, we detected a strong
negative correlation between the frequency of
CD8T-C3-LAG3 and CD8T-C2-IFNG in both cohorts
(Figure 3G). The frequencies of CD8T-C3-LAG3
(P<0.001) and Treg-C2-TNFRSF9 (P<0.001) were
significantly greater in MI basal tumour samples than
in MI luminal and NMI samples (Figure 3H, 3I). In
addition, KM analysis revealed that patients with a
high degree of CD8T-C3-LAGS3 infiltration exhibited
worse overall survival (OS) in both the TCGA-BLCA
cohort (P=0.0017) (Figure 3]) and the IUPU-UC cohort
(P=0.045) (Figure 3K). No significant difference in
prognosis was observed between patients with high
and low levels of Treg-C2-TNFRSF9 infiltration in
thee TCGA-BLCA cohort (P=0.49) (Figure S3B),
whereas patients with high levels of Treg-C2-
TNFRSEF9 infiltration had worse OS in the in-house
UC cohort (P=0.0079) (Figure S3D).
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Figure 3. Diversity and dynamics of T and NK cells during UC progression. (A) UMAP plot of all T and NK cells, colored by ten distinct cell subsets. (B) Heatmap depicting the
expression of function-associated signature genes used to define T and NK cells, with color intensity indicating normalized expression levels. (C) Cell fractions (as percentages)
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and cell numbers of T and NK cell subsets stratified by molecular subtypes. (D) Heatmap of Roe values for T and NK cell subsets across molecular subtypes. (E, F) Heatmaps
displaying dynamic changes in gene expression of CD8* T cells (E) and CD4* T cells subsets (F). Normalized gene expression levels and pseudotimes were indicated by color
gradients (upper). Gene expression profiles were hierarchically clustered (left), with enriched GO and KEGG pathway terms shown on the right. (G) Heatmap illustrating
Spearman correlations among the relative abundances of T and NK cell subsets across the TCGA-BLCA, UROMOL2020, and in-house IUPU-UC cohorts. Cell abundances were
inferred using the deconvolution algorithm BayesPrism. Correlation coefficients are represented by the color scale. (H, I) Box plots comparing the estimated infiltration
proportions of CD8T-C3-LAG3 (H) and Treg-C2-TNFRSF9 (I) across the molecular subtypes. Colored dots represent individual samples. (J, K) Kaplan-Meier survival analysis of
the overall survival (OS) of patients in the TCGA-BLCA (J) and in-house IUPU-UC (K) cohorts, stratified by high versus low signature scores of CD8T-C3-LAG3.

Currently, the classification of exhausted CD8* T
cells (CD8Tex) is not completely understood, as
several studies have identified three distinct subsets
in the tumour microenvironment: progenitor,
intermediate, and terminally exhausted subsets [36].
In this study, ROGUE index analysis [37] revealed
lower cell purity in the CD8T-C3-LAGS3 subset than in
other CD8* T cell subsets (Figure S3D), which
indicates a high degree of heterogeneity among
CD8Tex cells. To elucidate this heterogeneity, we
further stratified CD8Tex cells into three subsets
(Figure S3E). One cluster, which was characterized by
high expression of GZMK, CD44, and ICOS, and the
highest cytoTRACE scores (Figure S3F and S3G), was
designated as CDS8Tex-Prog, representing a
progenitor-like state of CD8* T cell exhaustion. The
remaining two subsets exhibited upregulation of
exhaustion-associated markers (Figure S3G). Among
them, one subset that displayed markedly higher
expression of terminal exhaustion markers, including
CTLA4, TIGIT, BATF, CXCL13 and PRDMI, and
significantly elevated terminal exhaustion scores
(P<0.001), was defined as CD8Tex-Term (terminally
exhausted cells) (Figure S3G and S3H). The final
subset, characterized by an intermediate exhaustion
state, was termed CD8Tex-Int. We observed that
CD8Tex-Prog cells were relatively enriched in normal
tissues, whereas CD8Tex-Int and CD8Tex-Term cells
were more abundant in tumour samples (Figure S3I).
Furthermore, KM survival curves revealed that
patients with a high degree of CD8Tex-term
infiltration had significantly worse OS in both the
TCGA-BLCA cohort (P=0.0014) (Figure S3]) and the
in-house cohort (P=0.049) (Figure S3K).

Deciphering myeloid cell states associated
with UC progression

The increased infiltration of myeloid cells in MI
tumour samples suggests that these cells may
promote tumour progression (Figure 1E, 1F).
Following reclustering analysis, we identified ten
distinct myeloid subsets. On the basis of differentially
expressed genes, these subsets were classified into
five major categories: macrophages (macro) (C1-C4),
monocytes, dendritic cells (DCs) (C1-C3), neutrophils
and mast cells (Figure 4A, 4B). The myeloid subsets
exhibited distinct distribution patterns across
pathological and molecular subgroups. Cells in the
DC-C1 cluster, characterized by high expression of

XCR1 and IRF8, were identified as conventional type
1 dendritic cells (cDCls) and were predominantly
enriched in NMI tumour samples. In contrast, cells in
the DC-C2 cluster, which expressed high levels of
CD1c and CLECI0A, corresponded to conventional
type 2 dendritic cells (cDC2s), the distribution of
which did not significantly differ across the
subgroups (Figures 4C and 4D). Cells in the DC-C3
cluster, uniquely express GZMB, and along with
neutrophils, were increased in MI basal tumour
samples (Figure 4D).

Macrophage infiltration was elevated in tumour
samples (Figure 4D), which highlights their pivotal
role in tumorigenesis and tumour progression. The
functional heterogeneity of tumour-associated
macrophages (TAMs) is underscored by their distinct
phenotypic subsets, commonly categorized into
antitumour M1 (classically activated) and protumour
M2 (alternatively activated) polarization states [38]. In
this study, we identified four TAM subclusters:
Macro-C1-IL1B, Macro-C2-MCR1, Macro-C3-SPP1,
and Macro-C4-5100A9 (Figures 4A, 4B and S4A).
Analysis of M1 and M2 polarization signatures (Table
S4) scores revealed that Macro-C1-IL1B had elevated
M1 scores (P<0.001), whereas Macro-C2-MCR1
(P<0.001) and Macro-C3-SPP1 (P<0.01) had higher M2
scores (Figures 4E and S4B). Among these subsets,
Macro-C4-S100A9  demonstrated  the  greatest
developmental potential (P<0.001) (Figure S4C),
potentially indicating a polarization-quiescent or
MO-like state. Macro-C3-SPP1 was enriched in
oxidative phosphorylation and PPAR signalling
pathways, whereas Macro-C1-IL1B was
predominantly  associated = with inflammatory
pathways such as NF-xB and TNF signaling (Figures
4F, S4D, S4E). Augur [39] analysis revealed that
Macro-C3-SPP1 was prioritized in MI tumour samples
(Figure 4G). Furthermore, in the TCGA-BLCA cohort,
increased infiltration of Macro-C3-SPP1 and
Macro-C2-MCR1 was significantly correlated with
reduced overall survival rates (P<0.001 and P=0.0019,
respectively) (Figure 4H). Collectively, these findings
suggest that the enrichment of Macro-C3-SPP1 may
play a critical role in promoting muscle invasion in
ucC.

Cellular heterogeneity of stromal cells in UC

Stromal cells play crucial roles in the tumour
microenvironment. To determine their cellular
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heterogeneity, a total of 29,573 stromal cells were
extracted for reclustering. COL1A1l* stromal cells
were categorized into four major clusters: cancer-
associated fibroblasts (fib), identified by high
expression of PDGFRA, were further divided into four

(myoFib), defined by high RGS5 expression [12], can
be further categorized into two subtypes:
myoFib-MUSTN1 and myoFib-LAMAS3. Pericytes,
characterized by high expression of KCNJ§ [40], were
further classified into two subsets: pericytes-EGFL6

subgroups (Figure 5A, S5A). Myofibroblasts and pericytes-STEAP4 (Figure 5A, S5A).
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Figure 4. Characterization of subclusters and function profiles of myeloid cells in UC. (A) UMAP plot of myeloid cells, colored by ten subclusters. (B) Bubble plot showing
differentially expressed genes across myeloid subsets. Dot size represents the proportion of cells expressing the gene, and color indicates the average normalized expression
level. (C) Bar plot showing proportional abundances (percentages) of myeloid cell subsets across pathological and molecular subtypes. (D) Heatmap of Ro/e values for myeloid
clusters across molecular subtypes. (E) Cumulative distribution plots of M1 and M2 polarization scores across four macrophage clusters, accompanying box plots show the score
distributions per cluster. Statistically significant p-values are indicated by asterisks (**P < 0.01, ***P < 0.001). (F) Gene set enrichment analysis (GSEA) of pathways enriched in
macro-C3-SPP] cells compared to macro-C2-ILB cells. (G) Lollipop chart of the area under the curve (AUC) scores from Augur analysis across four macrophage subclusters,
highlighting cell type prioritization between muscle-invasive (Ml) and non-muscle-invasive (NMI) groups. (H) Kaplan-Meier survival curves for overall survival (OS) of patients in
the TCGA-BLCA cohort, stratified by high versus low infiltration of macro-C2-MRCI (left) and macro-C3-SPPI (right). Statistical significance was determined using the log-rank

test.
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Figure 5. Cellular heterogeneity of stromal cells. (A) UMAP showing the COLIA1* stromal cells, colored by nine subclusters. (B) Heatmap of R values for fibroblast
subclusters across pathological and molecular subtypes. (C) Heatmap showing the GSVA enrichment scores for hallmark pathways across COLIA1* stromal cell subclusters. (D)

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21

6663

UMARP illustrating the developmental trajectories of fibroblasts across subclusters. (E) Volcano plot showing differentially expressed genes in fibroblasts between muscle-invasive
(MI) and non-muscle-invasive (NMI) samples. (F) Lollipop chart showing area under the curve (AUC) scores from the Augur analysis, highlighting cell type prioritization among
fibroblast subclusters between Ml and NMI samples. (G) Kaplan-Meier survival curves for overall survival (OS) in the TCGA-BLCA cohort, stratified by high versus low infiltration
of fib-GREMI. Statistical significance was determined using the log-rank test. (H) UMAP plot showing endothelial cells, colored by six subclusters. (I) Heatmap of Ro/e values for
endothelial clusters across pathological and molecular subtypes. (J) UMAP showing endothelial cells, colored by tip-like and stalk-like scores. (K, L) Violin plots showing the

tip-like (K) and stalk-like (L) scores across the normal, NMI and Ml samples.

Fib-APOD, which was observed primarily in
normal tissues (Figure 5B), was enriched in
complement and coagulation pathways (Figure 5C),
and was associated with the upregulation of genes
associated with tissue regeneration and proliferation,
including APOD and IGF1 (Figures S5A, S5C). This
subcluster closely resembled the COLI5A1" fibroblast
progenitors described by Gao et al. [33]. A
bidirectional differentiation trajectory was observed
in fibroblasts, which transitioned from a Fib-APOD
phenotype to an inflammatory and interferon-
regulated phenotype (Figure 5SB, 5D). Fib-BMP5 was
found mainly in the tumour samples, and was
characterized by the elevated expression of SLC14A1,
NRGI1, and WNT5A (Figures S5A and S5C). This
subcluster was likely induced by interferon response
signalling (Figure 5C) and has been reported to be
linked to poor clinical outcomes [41]. Fib-GREM1,
which was enriched mainly in MI basal tumour
samples, exhibited characteristics associated with
inflammatory responses and epithelial-mesenchymal
transition, which highlights its immunoregulatory
functions. Moreover, this subcluster underwent
metabolic reprogramming characterized by increased
hypoxia and glycolysis, reflecting its specialized
adaptations to the tumour microenvironment.
Notably, elevated GREMI expression has been
observed in fibroblasts across various carcinomas,
where it contributes to tumour cell proliferation and
invasion [42]. Consistently, GREM1 expression was
upregulated in fibroblasts from MI samples, and
Augur analysis confirmed the preferential enrichment
of Fib-GREM1 in MI tumors (Figure 5E and 5F).
Additionally, a higher Fib-GREM1 score was
significantly associated with reduced overall survival
rates (P=0.025) (Figure 5G).

Endothelial cells (ECs) and mural cells are the
main components of the vasculature. Angiogenesis, a
critical hallmark of cancer, is driven by the migration
of tip cells and the proliferation of endothelial
progenitor cells, which promote the sprouting of new
blood vessels into the tumour microenvironment [25].
In our analysis, ECs were categorized into lymphatic
and vascular ECs, and the latter were further divided
into one arterial, two venous (venous-CSF3 and
venous-HMOX1), and two capillary (capillary-
SLC3A2 and capillary-RGCC) EC subsets (Figure 5H
and S5D). Notably, compared with normal tissues,
capillary-RGCC ECs were enriched in tumour

samples and exhibited upregulated expression of
genes associated with the G2M checkpoint, the mitotic
spindle, and Wnt/p-catenin signalling (Figure 51 and
S5E). Interestingly, we found that lymphatic ECs were
enriched only in MI basal tumour samples (Figure 5I).
To further elucidate the role of ECs in muscle-invasive
progression, we assessed EC phenotypes based on the
tip and stalk cell gene signatures [25] (Figure 5], Table
54). Among the EC subsets, capillary-RGCC ECs
displayed the highest tip-like scores but the lowest
stalk-like scores (P<0.001 and P=0.0019, respectively)
(Figure S5F and S5G). Moreover, MI tumour tissues
were significantly enriched in tip-like ECs (P<0.001),
whereas ECs in NMI tumuor tissues exhibited higher
stalk-like scores (P<0.001) (Figure 5K and 5L), which
suggests a phenotypic shift in ECs associated with
progression to MI UC.

Interferon-y signalling drives MHC-II
expression in cancer cells

Cancer cells harbouring MP5 status exhibited
high expression of genes associated with MHC-II
antigen presentation and the interferon response. To
further investigate the epithelial-immune dual
feature of these cells, we stratified them into MHC-II*
and MHC-II- subgroups according to their
coexpression of four canonical MHC-II-related genes
(HLA-DRA, HLA-DRB1, HLA-DPA1, and HLA-DPBI)
(Figure 6A). Cells that exhibited detectable expression
(expression level >0) of all four genes were classified
as MHC-II*, while the remaining cells were
designated MHC-II-. This binary classification
yielded a robust separation: MHC-II* cancer cells
consistently expressed all the selected MHC-II genes,
whereas MHC-II" cells expressed almost none of these
genes (Figure 6B). As expected, MHC-II* cancer cells
exhibited high expression of MP5 and basal
phenotype gene signatures but low expression of
luminal phenotype gene signatures (Figure S6A-C).
The proportion of MHC-II* cancer cells was the lowest
in the NMI group but it was significantly greater in
the MI basal group (P=0.029) (Figure 6C and 6D).
Differential gene expression and gene ranking
analyses revealed that the expression of CD74,
HLA-DRA, HLA-DRBI1, and FXYD3 was elevated in
MHC-II* cancer cells, whereas the expression of
LOXL2 and DLL4 was increased in MHC-II" cancer
cells (Figure S6D).
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Figure 6. IFN-y signalling drives the expression of MHC-II on cancer cells. (A) UMAP visualization of cancer cells, colored by the expression levels of four MHC-Il genes. (B) Dot
plot showing expression of all MHC-II molecule genes in MHC-II* and MHC-II- cancer cells. (C) Proportional abundance (percentage) of cancer cell subsets across pathological
and molecular subtypes. (D) Comparison of the average percentage of MHC-II* cancer cells across pathological and molecular subtypes. (E) Immunofluorescence staining of
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nuclei (DAPI, blue), pan-cytokeratin (pan-CK) (green), HLA-DRA (red), and CDé68 (gray) in non-muscle-invasive (NMI) and muscle-invasive (MI) UC tumors. Colocalization of
pan-CK and HLA-DRA appears yellow in merged images (white arrows). (F, G) Heatmaps of pathway activity scores from PROGENYy analysis in cancer cells, grouped by MHC-II
expression (F) and by pathological and molecular subtype (G). (H) PROGENYy analysis of JAK/STAT pathway activity in spatial transcriptomic sections. (I) Western blot analysis
of HLA-DRA expression in T24 cells treated with IFN-y (0, 5, 10, 20 ng/mL) for 72 hours. (J) Volcano plot showing differentially expressed genes between T24 cells treated with
or without IFN-y (10 ng/ml). (K) Western blot analysis of T24 (left) and 5637 (right) cell lines demonstrates that IFN-y—-induced HLA-DRA expression is mediated through the
JAKI/STATI signaling. IFN-y—induced increases in JAK1 and STAT| phosphorylation, as well as the expression of total STAT| and HLA-DRA were suppressed by treatment with

the JAK1/2 inhibitor ruxolitinib.

To validate the dual epithelial-immune feature
of MHC-II* cancer cells, we performed multiple
immunofluorescence staining in UC tissues and
confirmed the coexpression of epithelial markers
(pan-CK) and HLA-DRA in single cancer cells from
MI  tumours (Figure 6E). As professional
antigen-presenting cells, dendritic cells, B cells, and
macrophages  constitutively — express MHC-II
molecules along with the classical costimulatory
molecules such as CD80 and CD86, both of which are
essential for CD4* T-cell activation [43]. Therefore,
although they express MHC-II molecules, MHC-II*
cancer cells lack CD86 expression (P<0.001) (Figure
S6E), rendering them incapable of effectively
activating CD4* T cells.

To explore the regulatory mechanisms
underlying the generation of MHC-II* cancer cells, we
performed pySCENIC analysis. The results revealed
that key transcription factors of the IFN-y signalling
pathway, including STAT1 and IFR1, exhibited
increased activity in MHC-II* cancer cells (Figure
S6F). PROGENy analysis revealed that JAK/STAT
signalling was the most prominently activated
pathway in MHC-II" cancer cells (Figure 6F). In
addition, cancer cells within the MI basal subgroup
demonstrated the highest level of JAK/STAT
pathway activity among all the subgroups (Figure
6G). Spatial transcriptomic analysis confirmed
elevated JAK/STAT pathway activity in MI basal
tumors (Figure 6H). In addition to IFN-y
response-associated genes (JAK1, STATI and STAT3),
CIITA, a master regulator of MHC-II gene expression,
was highly expressed in MHC-II* cancer cells (Figure
S6G, S6H). Notably, these cells exhibited greater
differentiation potential than did their MHC-II™
counterparts (P<0.001) (Figure S6I), which suggests a
link between IFN-y signalling and cancer -cell
plasticity. Given these findings, we hypothesized that
IFN-y-mediated  JAK/STAT  activation drives
MHC-II* cancer cell induction. In support of this
finding, we observed that CD8" T cells in MI tumours,
especially those in the MI basal group, exhibited
elevated IFNG expression (Figure S6]). This finding
was further validated in CD8* T-cell subsets
(CD8T-C2-IFNG cells) (Figure S6K). These findings
suggest that IFN-y secretion by CD8* T cells may
promote MHC-II expression in cancer cells, thus
shaping their immune interactions and differentiation
trajectories.

We evaluated the expression levels of MHC-II
molecules across 37 bladder cancer cell lines. Our
results revealed that most of these cell lines exhibited
low MHC-II expression (Figure S7A). Among them,
T24 and 5637 —both classified as the basal subtype—
showed minimal expression of HLA-DRA. However,
in vitro stimulation with IFN-y at concentrations
above 10 ng/mL significantly upregulated HLA-DRA
expression in these cell lines (Figures 61 and S7B).
Transcriptomic analysis further confirmed that IFN-y
stimulation activated relevant signalling pathways,
including the IFN-y response and the JAK/STAT
pathway, leading to increased expression of
MHC-II-related molecules such as HLA-DRA, CD74,
IRF1, and STAT1 (Figures 6], S7C-S7G). To further
validate that IFN-y-induced MHC-II expression is
mediated by the JAK/STAT pathway, we treated T24
and 5637 cells with the selective JAK1/2 inhibitor
ruxolitinib. Western blot analysis revealed that IFN-y
stimulation increased the phosphorylation of JAK1
and STAT1, as well as the total STAT1 protein level,
whereas these effects were markedly attenuated by
treatment with ruxolitinib (Figure 6K).

MHC-II* cancer cells predict poor prognosis
and contribute to tumour progression

We next assessed the prognostic relevance of
MHC-II* cancer cells in UC patients. KM analysis of
the TCGA-BLCA cohort revealed that patients with a
high MHC-II* cancer cell signature score had
significantly shorter OS (P = 0.047; Figure 7A).
Multivariate Cox regression analysis revealed both
lymphovascular invasion (LVI) (HR = 2.48; 95% CI:
1.14-5.37; P = 0.022) and a high MHC-II* cancer cell
signature score (HR = 4.81; 95% CI: 1.08-21.31; P =
0.039) as independent predictors of poor prognosis
(Figure 7B). However, no significant association
between the MHC-II* cancer cell signature score and
OS was observed in the IUPU-UC cohort based on
either KM or multivariate Cox analysis (Figure 7C and
S8A), which may be due to the limited sample size. In
the IMvigor210 cohort, a high MHC-II* score was
associated with shorter OS without reaching statistical
significance (P = 0.11; Figure S8B), but significantly
correlated with better progression-free survival (P =
0.043; Figure 7D). Furthermore, although the
difference was not statistically significant, higher
MHC-II* scores were observed in responders to
anti-PD-L1 therapy than in non-responders (Figure
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S8C, D). These findings suggest a potential role for
MHC-II* expression as a predictive biomarker for
immunotherapy, which warrants further
investigation.

Given the prognostic impact of MHC-II* cancer
cells, we sought to characterize their distribution and
function. Cell type deconvolution analysis revealed a
significant enrichment of MHC-II" cancer cells in MI
basal tumours (P<0.001; Figure S8E). Functionally,
MHC-II* cancer cells exhibited higher proliferation (P
= 0.042) and migration (P < 0.001) signature scores
(Figures 7E and 7F; Table S4). Consistently, over-
expression of HLA-DRA increased the proliferative
capacity of T24 and 5637 cancer cells, as confirmed by
CCK-8 (Figure 7G) and colony formation assays
(Figure 7H). Moreover, as shown in wound healing
(Figure 7I) and Transwell assays (Figures 7] and7K),
HLA-DRA overexpression significantly promoted
cancer cell migration and invasion. Taken together,
these results suggest that elevated MHC-II expression
on cancer cells may facilitate tumour progression.

MHC-II* cancer cells form spatial niches with T
cells and SPP1+ macrophages

To further assess the spatial relationships of
MHC-II* cancer cells, we employed the cell2location
model along with cell-type specific expression profiles
derived from our scRNA-seq dataset to deconvolute
cell-type abundances across eight UC tissue sections
(Table S2). Our analysis revealed that MHC-II* cancer
cells were less frequently observed in NMI and MI
luminal samples (Figure 8A-C), whereas their
distribution was markedly increased in MI basal
samples (Figure 7D-F). Notably, MHC-II* cancer cells
preferentially colocalized with CD8" T cells in MI
basal samples (Figure 7D-F), which suggests that
CD8* T cells may play a pivotal role in driving the
production of MHC-II* cancer cells. To quantitatively
assess the spatial relationships between cell subsets,
we applied the Kullback-Leibler (KL) divergence
analysis [33]. Both density plots and heatmaps
consistently revealed that MHC-II* cancer -cells
exhibited greater spatial similarity and pronounced
colocalization with CD8* T cells and Tregs in MI basal
tumours, as reflected by lower KL divergence values
(Figure 8A-F and S9A-F).

In the NMI and MI luminal phenotype sections,
immune cells were predominantly localized at the
periphery of cancer cell regions (Figure 8A-C).
However, in MI basal phenotype tissues, immune
cells infiltrated deeper into the central regions of
cancer cells (Figure 8D-F). We then applied NMF to
the cell subcluster abundances inferred from
cell2location across all tissue sections to identify
spatial co-occurrence patterns, which provided

insights into potential cellular interactions. Our
analysis revealed that MHC-II* cancer cells
colocalized with CDS8T-C2-IFNG, macro-C3-SPP1,
and Treg-C2-TNFRSF9 in MI basal sections (Figure
8G, S9G-K).

To further investigate the colocalization
dynamics within individual spots as well as across
adjacent spots, we utilized the MISTy algorithm to
analyse the spatial neighbourhood of cell subclusters
across all tissue slides. Comparing the MI UC slides
with the NMI UC slides, we observed that MHC-IT*
cancer cells were indeed predicted to be colocalized
with CD8T-C2-IFNG, macro-C3-SPP1, and Treg-C2-
TNFRSFY, and vice versa (Figure 8H). However, in the
NMI UC slides, we observed a notable decrease in the
association between CD8T-C2-IFNG and Treg-C2-
TNFRSF9 (Figure 8H). The observed shift in spatial
associations in MI tissue slides may suggest
alterations in immune cell dynamics that contribute to
the distinct tumour microenvironment characteristics
of these subtypes.

MHC-II* cancer cells shape the
immunosuppressive landscape in UC

To investigate the role of MHC-II" cancer cells in
the tumour microenvironment, we used CellPhoneDB
to analyse their interaction networks with various
identified cell subtypes in our study. MHC-II* cancer
cells significantly interact with fibroblasts,
macrophages, endothelial cells, and T cells (Figure
9A). Chemokines such as CXCL14, CXCL16, and
CCL20, expressed by MHC-II* cancer cells, mediate
interactions with exhausted CD8* T cells and Tregs
(Figure 9B, S10A), and contribute to the
immunosuppressive microenvironment [44, 45].
Additionally, the interactions between chemokines,
including CXCL1, CXCL8, and CCL2, and ACKRI,
expressed by endothelial cells, were notably greater in
MHC-II* cancer cells than in MHC-II" cancer cells
(Figure 9B and S10A). ACKR1 acts as a decoy receptor
for these chemokines, promoting angiogenesis and
enhancing pro-malignant effects [46]. Furthermore,
the regulatory network of MHC-II* cancer cells
revealed interactions between PVR and coinhibitory
receptors including TIGIT and CD96, which induce
CD8* T-cell exhaustion and Treg activation, and
subsequently facilitate immune evasion [47]. The
increased expression of CD47 on MHC-II* cancer cells
further promoted interactions with SIRPa on
macrophages, to a greater extent than that observed in
MHC-II" cancer cells (Figure 9C, S10B, S10C). This
interaction inhibits phagocytosis and prevents the
engulfment of cancer cells [48]. Similar interactions
were observed with SIPRy on exhausted CD8* T cells
and Tregs (Figure S10B).
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Figure 7. MHC-II* cancer cells predict poor prognosis and promote tumor aggressiveness. (A) Kaplan—Meier survival curves for overall survival (OS) of patients in the
TCGA-BLCA cohort, stratified by high versus low MHC-II* cancer cell score. (B) Multivariate cox regression analysis of MHC-II* cancer cells signature score and
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IMvigor210 cohort stratified by high versus low MHC-II* cancer cell signature scores. (E, F) Violin plots showing the proliferation (E) and migration (F) signature scores across
cancer cell subsets in the scRNA-seq dataset. (G, H) CCK8 proliferation assay (G) and colony formation assay (H) showing the proliferation ability of T24 and 5637 cells with
HLA-DRA overexpression. (I-K) Wound healing (1), Transwell migration (J) and Transwell invasion (K) assays demonstrating enhanced migration and invasion abilities of T24 and
5637 cells with HLA-DRA overexpression. scale bar, 50 pm. AJCC, American Joint Committee on Cancer.
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Figure 8. Spatial colocalization of MHC-II* cancer cells with immune cells. (A-F) Spatial mapping of major cell types (left) and individual cell subsets (right) onto transcriptomics
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(KL) divergence distributions, reflecting the degree of spatial association between MHC-
along the KL axis; a position closer to zero indicates stronger colocalization with MHC-II*

II* cancer cells and immune cell subsets. Each immune subset is represented by a dot
cancer cells. Specifically, the UCBOI1 and UCBO03 samples (E and F) were obtained from

the publicly available dataset (GSE171351). (G) Identification of cell compartments using non-negative matrix factorization (NMF) in UCBOI tumor sections. Normalized weights
of each cell type across NMF components are shown, with color intensity indicating the weight values. (H) MISTy-based estimation of cell cluster cooccurrence within spots
across all slides, comparing muscle-invasive (Ml) and non-muscle-invasive (NMI) UC samples.
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type.

Next, we used MultiNicheNet to compare the
cell-cell interaction between the cell components of
the MI and NMI groups. In the MI group, we detected
significant interactions between macro-C3-SPP1 and

MHC-II* cancer cells via the EREG/ERBB4 axis
(Figure 9D, S10D), which activates downstream
MEK/ERK and PI3K/AKT signalling pathways,
promoting cell proliferation and survival [49]. In
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addition, we observed increased interactions between
macro-C3-SPP1 and Treg-C2-TNFRSF9 through the
SPP1-ITGA4 axis in the MI group (Figure 9D, S10D),
which could facilitate the adhesion and migration of
activated Tregs within the tumour microenvironment,
potentially contributing to immune suppression and
tumour progression [50]. Furthermore, in the MI
group, fib-GREM1 was observed to significantly
interact with MHC-II" cancer cells through the
COL1AI1-ITGA2 and IL24-IL20RB axes (Figure 9E),
both of which are known to promote cancer cell
stemness and support tumour aggressiveness.

Discussion

In this study, we utilized a large-scale integrated
scRNA-seq dataset to systematically characterize the
intratumoral cellular heterogeneity and intertumour
differences in UC, and we provide a comprehensive
analysis of diverse cell populations and their
functional states. A recent scRNA-seq study has
demonstrated that although UTUC and UCB share
similar cellular compositions, they harbour distinct
functional cell subsets [15]. Notably, UTUC is
associated with a wunique immunosuppressive
microenvironment characterized by CD8* T-cell
exclusion and M1 macrophage expansion. However,
these findings were limited by insufficient
consideration of tumour stage variations and a
constrained sample size, as only three UTUC cases
were analysed, which may have affected the
robustness and generalizability of the conclusions.
Consistently, our analysis revealed a comparable
distribution of major cell types between UCB and
UTUC. However, the upregulation of the expression
of genes associated with immunosuppression, such as
CTLA-4, was not observed in UTUC. These
differences between UTUC and UCB at single-cell
resolution  highlight the need for further
investigations through larger-scale studies to validate
these observations and determine their clinical
implications.

Cancer cell plasticity enables phenotypic and
functional shifts that drive tumor initiation,
progression, metastasis, and therapeutic resistance
[51]. Our analysis revealed an epithelial-immune
hybrid gene expression program (MP5) in cancer cells,
characterized by the coexpression of interferon
response genes and MHC-II components (Figure 2F).
This program was positively associated with T-cell
infiltration, the basal tumour phenotype, and an
immune-inflamed microenvironment. Notably, this
epithelial-immune dual feature was predominantly
observed in cancer cells of MI UC tumors, particularly
those of the basal subtype, and no significant
differences were observed between UTUC and UCB.

Furthermore, we dichotomized cancer cells
according to their MHC-II expression status, and
revealed that the transcriptomic profile of MHC-II*
cancer cells was consistent with that of MP5 (Figure
S6B). While MHC-II molecules are typically expressed
on professional antigen-presenting cells, such as
macrophages and DCs, their aberrant expression on
cancer cells has been increasingly recognized.
However, the functional implications of cancer
cell-intrinsic MHC-II expression remain controversial.
Although previous studies have linked cancer
cell-specific MHC-II expression to a favourable
prognosis in multiple cancer types including colon
cancer [52], breast cancer [53], and melanoma [54],
recent scRNA-seq analyses have suggested a
contrasting role. Jin et al. [55] reported that HLA-DRM
tumour cells in nasopharyngeal carcinoma
contributed to CD8" T-cell exhaustion and tumour
progression by upregulating co-inhibitory receptors
on infiltrating T cells. Similarly, Lei et al. [56] reported
that MHC-II* cancer cells induced Treg expansion
while reducing CD4" effector T cells in
tumour-draining lymph nodes of patients with breast
cancer, thereby facilitating metastasis and immune
evasion. Another scRNA-seq study [57] demonstrated
that MHC-II expression in alpha-fetoprotein-positive
hepatocellular carcinoma is associated with immune
dysfunction, including T-cell exhaustion and the
accumulation of tumour-promoting macrophages.

We investigated the generation of MHC-II*
cancer cells and their role in the tumour
microenvironment of UC. Our analysis revealed an
upregulation of the IFN-y response and JAK/STAT
pathway in MHC-II* cancer cells (Figure 6F, S6H).
IFN-y, which is typically produced by NK cells and
CD8* cytotoxic T cells, exerts pleiotropic effects in the
tumour microenvironment, and its impact is
dependent on the duration and magnitude of
signalling [58]. The immunosuppressive landscape of
MI UC tissues, characterized by an ineffective T-cell
response (Figure 3D, 3H), may enable prolonged
IFN-y exposure, thereby inducing MHC-II expression
in cancer cells, as validated by in vitro IFN-y treatment
(Figure 61-K, S7B-G).

Although MHC-II* cancer cells constitute
approximately 20% of MI basal tumours (Figure 6C
and 6D), they may have a disproportionate functional
effect on the tumour microenvironment. Increased
expression of MHC-II molecules on cancer cells has
also been observed in other advanced malignancies,
including metastatic lymph nodes of breast cancer
[56] and high-grade serous ovarian cancer [59]. These
findings suggest that a subcluster of cancer cells with
elevated MHC-II expression may emerge under
selective immune pressure, potentially contributing to
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immune modulation and tumour progression. In our
study, MHC-II* cancer cells were spatially colocalized
with both CD8" T cells and Tregs (Figure 8 A-F), which
indicates potential cellular interactions that may drive
CD8" T-cell exhaustion and facilitate immune evasion.
In support of this, coculture experiments have shown
that HLA-DRM cancer cells upregulate the inhibitory
receptor expression on CD8" T cells, including PD-1,
LAG-3, and TIM-3 [55]. Additionally, MHC-II* cancer
cells have been reported to promote immune
tolerance via Treg differentiation and expansion [56].
Although the absence of costimulatory signals
prevents the direct activation of T cells, our study
revealed that MHC-II* cancer «cells exhibit
upregulated CD47 expression (Figure S10C), which
enhances their interaction with SIRPa on
macrophages (Figure 9C) and transmits a "don't eat
me" signal that inhibits phagocytosis. By evading
macrophage-mediated clearance, MHC-II* cancer
cells may facilitate immune escape; however, further
research is needed to validate and clarify the
mechanism.

In addition to their role in immune regulation,
MHC-II* cancer cells may also contribute to tumour
progression through phenotypic changes.
Overexpression of HLA-DRA in vitro enhanced cancer
cell proliferation and migration (Figure 7G-K). The
association between HLA-DR expression and cancer
metastasis and aggressiveness was initially debated
but were later substantiated. Recent studies have
indicated that high MHC-II expression is correlated
with functional stem cell activity in haematopoietic
stem cells, and expression levels progressively
decrease during differentiation [60]. Moreover,
MHC-II signalling, particularly via HLA-DR, has been
implicated in promoting cancer cell migration and
invasion by upregulating the expression of integrins
and cell adhesion molecules and concurrently
activating the JAK/STAT3 and PI3K/AKT pathways
[61].

The tumour microenvironment undergoes
dynamic evolution during cancer progression, and
transitions from an immunostimulatory state to an
immunosuppressive state. In our analysis, MI UC
samples exhibited an immunosuppressive landscape
characterized by a reduction in effector T cells,
increased CD8* T-cell exhaustion, increased Treg
expansion, and a greater abundance of M2-polarized
macrophages (Figure 3D, 4D), which may contribute
to tumour progression and immune evasion.
Exhausted CD8* T cells lose their cytotoxic function,
which enables unchecked tumor proliferation. The
overexpression of inhibitory receptors on T cells,
along with their ligands on cancer cells, facilitates
immune evasion [45]. Tregs suppress effector T-cell

responses by secreting cytokines such as IL-10 and
TGF-B and interacting by CD80/CD86 on DCs,
thereby impairing costimulatory signalling [62]. M2
macrophages, including well-characterized SPP1*
subsets, support tumor progression and metastasis
through  angiogenesis, extracellular ~ matrix
remodelling, and the secretion of immunosuppressive
cytokines and chemokines [63, 64].

This study has several limitations. First,
although our findings were derived from multiomics
analyses and were validated in multiple independent
cohorts, the experimental evidence remains relatively
limited. In particular, the functional assays were
primarily conducted in vitro, which may not fully
recapitulate the complexity of the in vivo tumour
microenvironment. Second, although our results
suggest potential communication between MHC-II*
cancer cells and immune cell populations, the
identified cellular interactions and regulatory
pathways lack experimental validation. Additional in
vivo studies and mechanistic experiments, such as
those involving coculture systems and humanized
mouse models, are needed to confirm and extend our
observations.

In conclusion, our study provides a
comprehensive single-cell analysis of UC, and reveals
an immunosuppressive tumour microenvironment
and a subset of cancer cells with MHC-II expression in
MI tumours. The intricate cellular crosstalk between
MHC-II* cancer cells and immune cells facilitates
immune evasion and tumour progression. However,
further studies are needed to validate these findings
and to elucidate their therapeutic implications.
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