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Abstract

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in cancer immunotherapy,
demonstrating impressive clinical outcomes, particularly for hematologic malignancies. However, its
broader therapeutic application, especially against solid tumors, remains limited. Key challenges include T
cell exhaustion, limited persistence, cytokine-mediated toxicities, and logistical hurdles associated with
manufacturing autologous products. Emerging gene editing technologies, such as CRISPR/Cas systems,
base editing, and prime editing, offer novel approaches to optimize CAR-T cells, aiming to enhance
efficacy while managing toxicity and improving accessibility. This review comprehensively examines the
current landscape of these gene editing tools in CAR-T cell therapy, highlighting the latest advancements,
persisting challenges, and future directions. Leveraging gene editing holds the potential to transform
CAR-T therapy into a more potent, safer, and broadly applicable modality for cancer and beyond.
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1. Introduction

Minimizing recurrence and durable remission
have always been the central objectives of oncology
research. Immunotherapy has gradually made its
mark in the field of cancer treatment, which lies in
rejuvenating the exhausted and synergetic state of
tumor-killing immune cells and thwarting the
immune-evasion tactics of cancer cells, with the goal
of eliciting a robust and effective anti-tumor response
[1]. Recent innovations in immunotherapeutic
strategies, ranging from immune checkpoint
inhibitors (ICIs) to adoptive cellular therapy (ACT)
and cancer vaccines, have reshaped cancer treatment

paradigms and produced remarkable clinical
progress.

Among these advances, chimeric antigen
receptor (CAR) technology represents a major

milestone. CARs are engineered receptors designed to
redirect T cells toward tumor-associated antigens

(TAAs) in a major histocompatibility complex
(MHC)-independent fashion, facilitating tumor
eradication. CAR-T cells (CAR-Ts) targeting the
pan-B-cell ~ marker CD19  have  exhibited
unprecedented response rates in refractory B-cell
malignancies [2]. While several CAR-T therapies have
received FDA approval for hematological cancers,
their application to solid tumors remains primarily
investigational, with significant clinical adoption
hindered by challenges such as suboptimal efficacy,
safety concerns, restricted patient accessibility, and
prohibitive manufacturing costs [3, 4].

The remarkable clinical achievements of CAR-T
cell therapy (CAR-Tct) are inextricably traced back to
advancements in genetic engineering, specifically in
engraftment, persistence, and proliferation of CAR-Ts
derived from large-scale in vitro cultures —key factors
for sustained therapeutic responses [5, 6]. Among the
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available genetic editing tools, the CRISPR/Cas9
system has emerged as pivotal for developing
next-generation or allogeneic CAR-Ts with enhanced
biosafety and efficacy profiles. In this review, we
scrutinize  novel = CRISPR/Cas9-based  cancer
immunotherapy scenarios, situating them within the
context of cutting-edge advances in immunotherapy,
while also addressing the persistent challenges that
have hindered substantial clinical success.
Furthermore, we delineate prevailing trends and
propose viable strategies to overcome these barriers.
Ultimately, this paper aims to catalyze transformative
advances in immunotherapy.

2. Current challenges

Despite revolutionizing the management of
hematological malignancies, CAR-Tct faces several
critical ~ obstacles  limiting  broader  clinical
implementation. The complexity of CAR design
(Figure 1), incorporating antigen-binding (AD), hinge
(HD), transmembrane (TMD), and signaling domains
(SD), underpins both its efficacy and its risks.
Achieving an optimal balance between effectiveness
and manageable toxicity, along with addressing

CAR-T cell design & -
working mechanisms

r—> Tumor cell lysis ‘ﬁ 2
y 0g®

logistical hurdles, remains challenging (Figure 2).

2.1 CRS

Cytokine release syndrome (CRS) is a common
and sometimes life-threatening complication,
occurring in 42-93% and 84-95% of patients receiving
CD19 [7] or BCMA CAR-T therapies [8], respectively.
It results from excessive cytokine and chemokine
release, with IL-6 being a central mediator [9]. IL-6
blockade agents, such as tocilizumab and siltuximab,

effectively control CRS symptoms but may
inadequately = prevent, or even exacerbate,
neurotoxicity ~ (immune effector cell-associated

neurotoxicity syndrome, ICANS) [10, 11]. Emerging
strategies, such as preemptive administration of
IL-6-binding  agents  (IL-6  ‘sponges’)  and
higher-frequency dosing of IL-1 inhibitors like
anakinra, represent potential avenues for CRS
mitigation. Moreover, single-cell RNA sequencing
(scRNA-seq) analyses have identified IFN-y-regulated
inflammatory  signatures and  IL-l-associated
resistance pathways, suggesting new therapeutic
targets, although preclinical studies indicate potential
impacts on CAR-T expansion and function [12, 13].
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Figure 1: CAR-T cell architecture and anti-tumor mechanisms. A typical CAR-T cell expresses a chimeric receptor composed of an extracellular scFv, linked via a hinge
and transmembrane region to intracellular co-stimulatory and CD3{ signaling domains. Upon binding to its target antigen, CAR engagement leads to clustering and
phosphorylation of ITAMs within the CD37 domain, which recruits ZAP-70 and initiates downstream signaling cascades. This ultimately results in T cell activation, cytokine

secretion, and targeted tumor cell killing.
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Figure 2: Key challenges in CAR-T cell therapy. CAR-Tct faces several key challenges: CRS resulting from excessive immune activation; ICANS, primarily caused by BBB
dysfunction and central nervous system inflammation; ICAHT, stemming from on-target recognition of antigens expressed on hematopoietic progenitors and the inflammation
in bone marrow microenvironment; OTOT, which occurs when healthy tissues expressing the target antigen are inadvertently targeted; a complex, multi-step manufacturing
process spanning from leukapheresis to CAR transduction, expansion, and reinfusion; and the risk of second primary malignancies following CAR-T treatment.
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2.2 ICANS

ICANS is another significant toxicity, presenting
as a spectrum of neurologic symptoms and often
occurring alongside or subsequently to CRS (Figure 2)
[14]. The pathogenesis may involve loosening of the
blood-brain barrier (BBB) owing to endothelial
disruption and a systemic inflammatory state enables
the intracerebral passage of both circulating cytokines
and CAR-Ts, followed by glial cell injury [15]. Mild
ICANS is primarily managed with supportive care
and close neurological monitoring. For moderate to
severe ICANS, corticosteroids —such as
dexamethasone or methylprednisolone—are the
first-line therapy according to ASCO and ASTCT
guidelines [16, 17]. Tocilizumab, while effective for
CRS, is not recommended for isolated ICANS.
High-throughput proteomic analyses have identified
IL-18 as being associated with the onset of ICANS
symptoms, suggesting that targeting the IL-18
pathway may represent a potential strategy to reduce
neurotoxicity [10, 18]. However, the efficacy of IL-18
antagonists in preventing or treating ICANS remains
to be confirmed in preclinical or clinical studies.
Concurrently, novel CAR designs are being
developed to minimize the risks of CRS and ICANS
while enhancing tumor antigen recognition and
effective T-cell signaling.

23 ICAHT

Emerging clinical insights have cast a spotlight
on cytopenia, a frequently encountered and insidious
complication of CAR-Tct, now categorized as immune
effector cell-associated hematotoxicity —(ICAHT,
Figure 2) [19]. ICAHT is intricately linked to the
severity and protraction of neutropenia, with late
ICAHT denoting neutropenia that lingers beyond
one-month post-infusion [20]. The
CAR-HEMATOTOX model, which integrates
variables reflective of hematopoietic reserves—
encompassing baseline hemoglobin, platelet, and
neutrophil counts, alongside baseline serum ferritin
and CRP, has demonstrated effective in predicting
delayed ICAHT and infection risk [21]. As the
management landscape for ICAHT continues to
evolve, models like CAR-HEMATOTOX hold the
potential to guide preemptive strategies, including the
judicious deployment of G-CSF and tailored
anti-infective regimens, allowing for tailored
treatments during early ICAHT [22]. In scenarios of
prolonged cytopenia, where autologous stem cells
have been cryopreserved, autologous stem cell
augmentation has shown feasibility following both
CD19- and BCMA-targeted CAR-Tct. For few patients
(<5%) in whom late ICAHT remains recalcitrant,

allogeneic hematopoietic stem cell transplantation
(HSCT) constitutes the ultima ratio [23].

240TOT

CAR-Ts targeting antigens shared with normal
tissues can induce severe, sometimes fatal, toxicity in
healthy organs (OTOT), particularly in solid tumor
settings (Figure 2). A case in point is the application of
CD19 CAR-Ts, which, while adept at eradicating
malignant B cells in ALL, inadvertently ensnare
normal B cells in their therapeutic crosshairs [24]. A
subset of mural cells, indispensable for the
maintenance of BBB integrity, become unintended
casualties owing to their expression of CD19,
resulting in BBB disruption and contributing to
observed toxicities [25]. The scarcity of truly
tumor-specific surface antigens (neoantigens) makes
target selection challenging. Nevertheless, most
targets in solid tumors are TAAs, such as EGFR,
CAIX, and HER?2, which are also expressed on healthy
tissues [26]. Neoantigens, particularly those expressed
on the cell surface, are a rarity, especially in tumors
characterized by a low mutational burden [27].
Instances of severe toxicities have been reported in
patients receiving CAR-Tct targeting TAAs: fatal
pulmonary toxicity with CAR-Ts against HER2, lung
toxicity with CEA-targeting, hepatic toxicity with
CAIX-directed, and dermal toxicity with EGFR-
targeting [28, 29].

2.5 Manufacturing and accessibility

Most approved CAR-T products are autologous,
whose bespoke manufacturing limits scalability and
can delay access (Figure 2). Against this backdrop,
allogeneic, “off-the-shelf” universal CAR-T (UCAR-T)
products manufactured from healthy donors and
stored as ready-to-infuse doses offer several practical
advantages: they can shorten the vein-to-vein time,
lower cost via economies of scale, and improve
lot-to-lot consistency. UCAR-T is also a critical
alternative for patients in whom autologous
manufacturing is not feasible—such as those with
T-cell malignancies or with poor T-cell fitness after
heavy pretreatment—and the on-hand inventory can
facilitate redosing when initial expansion is
suboptimal, potentially improving overall efficacy.
Currently, this strategy is still maturing and requires
extensive gene editing and mitigation of risks
associated with graft rejection, immunogenicity, and
graft-versus-host disease (GVHD) [30]. Early clinical
trials have yielded encouraging signals (e.g.,
anti-CD19/CD7  programs for leukemia and
BCMA-directed products for myeloma), but
autologous CAR-T remains the most practical and
clinically validated option at present [31-33].
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Furthermore, high-dimensional profiling of CAR-T
manufacturing underscores that culture conditions
strongly shape cell phenotype and function, often
more than the integration site itself. Early (day 5)
products retain stem-like, metabolically active T cells
with high proliferative capacity, whereas prolonged
culture (day 10) enriches for terminally differentiated,
potentially exhausted subsets; while both show
similar cytotoxicity, they differ in activation and
checkpoint profiles. Cryopreservation modestly alters
some memory/metabolic markers but preserves
overall function [34]. These findings underscore the
importance of optimizing manufacturing protocols to
maintain favorable metabolic and phenotypic traits,
supporting improved CAR-T cell efficacy and
accessibility.

2.6 CAR-T-associated malignancies

Although rare, several reports have documented
second primary malignancies (SPMs) following
CAR-Tct, implying the potential toxicity of CAR-T
products (Figure 2). Notably, among 22 cases reported
by the FDA, three exhibited integration of the CAR
transgene within malignant clones, one of which
involved insertion into the 3’-UTR of PBX2, an
oncogene implicated in lymphomagenesis following
treatment with anti-BCMA autologous CAR-Tct [35,
36]. However, subsequent sequencing revealed that
oncogenic mutations pre-existed CAR-T
manufacturing, making causality ambiguous.
Mechanistically, T-cell transformation may result
either from insertional mutagenesis disrupting tumor
suppressors or activating proto-oncogenes, or from
prolonged CAR and endogenous TCR signaling
prompting accumulation of mutational events.
Alternatively, the rare occurrences might reflect
expansion of  pre-malignant T-cell clones
inadvertently harvested and modified during CAR-T
production [36]. While FDA safety reviews
underscore the “remarkably low” risk with
autologous CAR-Ts, the finding of SPMs in CAR-T
treated patients remains concerning [37]. Taken
together, these clinical cases and molecular findings
highlight the theoretical risk of oncogenic
transformation —whether via insertional mutagenesis,
clonal selection, or chronic activation
signaling —underscoring the importance of long-term
genomic surveillance in CAR-T cell recipients.

3. Gene editing

To surmount these hurdles, advanced
gene-editing  techniques have emerged as
indispensable tools. Foremost among these is
CRISPR/Cas9, renowned for its precision and
versatility in engineering cellular genomes to enhance

therapeutic efficacy and safety. Subsequent sections
delve deeper into innovative CRISPR-based
methodologies  and  highlight  sophisticated
approaches such as base editing and prime editing,
illuminating their promising roles in refining CAR-T
cell therapeutics (Table 1).

3.1 CRISPR/Cas9

CRISPR/Cas9 system enables precise cleavage of
specific genomic loci in human cells and supports a
wide range of transgene insertions, including
expression markers, selectable reporters, gene
expression regulators, and even the integration of
entirely new gene cassettes [38, 39] (Figure 3).
Nuclease-deficient Cas9 (dCas9), which lacks
endonuclease activity and can be conjugated with
transcriptional repressors or activators to create
CRISPR interference (CRISPRi) and CRISPR
activation (CRISPRa) systems, respectively. Targeted
epigenetic modifications are also available within the
CRISPR/Cas9 family, although the journey toward
ideal orchestration is fraught with challenges. CRISPR
off induces stable epigenetic silencing, which in some
contexts can be reversed by CRISPR on, providing a
dynamic and valuable addition to the existing
CRISPR toolkit [40].

3.2 Base and prime editing

In contrast to conventional CRISPR/Cas9-
mediated gene editing, base editors (BEs) afford
targeted nucleotide substitutions without instigating
DSBs or necessitating donor DNA, thus
circumventing  error-prone  repair = pathways.
Typically, BEs incorporate a Cas9 nickase (nCas9)
tethered to a deaminase enzyme, occasionally
complemented by ancillary domains designed to
heighten editing precision (Table 1) [41]. The
pioneering BEs, cytosine base editors (CBEs) and
adenine base editors (ABEs), orchestrate CG-to-TA
and AT-to-GC nucleotide conversions, respectively
[42, 43]. As numerous genetic disorders stem from
discrete nucleotide mutations, BEs represent a
compelling therapeutic strategy for rectifying such
aberrations. The clinical validation of this approach is
underscored by FDA approval of therapies such as
Casgevy and Lyfgenia for sickle cell disease.
Nevertheless, the adoption of base editing techniques
confronts certain hurdles, notably the risk of
unintended bystander edits within a restricted
nucleotide editing window, necessitating continual
refinements to bolster specificity and curtail off-target
effects [44, 45].

With greater flexibility, prime editors (PEs) can
meticulously target and amend virtually any genomic
sequence, free of DSBs reliance (Table 1). Beyond
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simple base alterations, PEs excel in the insertion or
removal of short DNA stretches at designated sites.
Prime editing has been successfully demonstrated in
various organisms, including plants, mice, and
organoid lines, achieving extremely low levels of
off-target edits [46, 47].

4. Application of gene editing in CAR-Tct

In oncological settings, patients often exhibit
compromised immune systems, which include

phenotypic alterations and functional deficits in T
cells, significantly undermining anti-tumor immunity.
The emergence of genome editing technologies, such
as CRISPR/Cas9 system, base editing tools, and
prime editing agents, have opened new frontiers in
reshaping and potentiating human T cells. In this
section, we have discussed the major translational
barriers of CAR-Tct and how gene editing strategies
address these issues (Figure 4).

Table 1. Comparisons between CRISPR/Cas9, base editing, and prime editing in terms of editing precision, efficiency, off-target effects,

delivery mechanisms, and translational maturity.

Category Cas9

Base editing

Prime editing

type of edits supported
(knock-out, point large gene knock-in (requires donor DNA
mutation, small insertion) template).

types of edits not
supported without a repair template; unpredictable indel

patterns from NHE]J.

sequence constraints (edit PAM sequence near the target; Cas9 cuts ~3 bp
window) from PAM.

knock-out efficiency
(disrupting genes)

high efficiency for gene disruption: >70-80%

are feasible with concurrent sgRNAs; triple
knock-outs in T cells have been reported.

precision editing moderate to low. Precise insertion or base
efficiency (installing substitution via HDR is much less efficient than
specific point mutations or knockout via NHE]J in T cells.

small sequences)

multiplex editing capacity capable of multiplexing. Triple knock-outs using
(multiple simultaneous
edits) preclinical studies.

DNA-level off-target
activity (unintended
genomic changes)

RNA off-target activity
(off-target editing of RNA)
chromosomal
rearrangement risk
(translocations, large
deletions)

delivery formats (RNP,
mRNA, viral vectors)

gene disruptions or translocations or introduce
unintended mutations or large deletions with
partial homology to the gRNA.

none observed for Cas9.

elevated when multiplexing.

Cas9 can be electroporated with sgRNA; for in
vivo or ex vivo uses, viral vectors like AAV or

clinical CAR-T manufacturing.

delivery efficiency in T
cells (uptake and
expression success)

high editing rates but with notable cell toxicity.

clinical trial usage to date most advanced-already in trials.

manufacturing scalability ~scalable with existing methods.
(suitability for large-scale
CAR-T production)

suitability for UCAR-T enabled by multiplex knock-outs.

to introduce point mutations or stop codons
(enabling functional gene knockout).

precise point mutations are not directly introduced cannot insert large sequences (no new DNA
added).

Cas9-derived nickase, requires PAM near the
target; editing window typically 4-8 nucleotides from PAM site, determined by pegRNA
from PAM, depending on base editor.

high efficiency, even for multiplexed
knock-out in primary T cells; multiplex knock-outs knock-outs: simultaneous disruption of 3-4
genes in T cells at high rates (>80%). Base
editing of a single gene can be very efficient.
high for eligible targets; 30-80% editing
efficiency for single base substitutions at
accessible sites.

well-suited for multiplex editing. Quadruple
Cas9 have been done in CAR-T cells in clinical and base edits in T cells have been achieved with
high efficiency.

off-target point mutations-both
Cas9-dependent and Cas9-independent, mostly substantial off-target mutations and
single-nucleotide substitutions.

modern base editors greatly reduced RNA
editing activity.

minimal risk no detectable translocations in T
cells with triple or quadruple base edits.

emerging in the clinic.

similarly scalable.

highly suitable and perhaps optimal for

knock-out via NHE]J or insert sequences; supports C—T (CBEs) or A—G (ABEs) base substitutions versatile small edits without DSBs: install

all 12 possible point mutations and small
insertions or deletion.

Inefficient for large DNA insertions (>50
bp); edit size limited by pegRNA design.

PAM required; edit can occur up to ~30 bp

extension.

lower efficiency for gene knockout or
editing in primary T cells; typical editing
rates for point mutations <10-30%,
insertions/ deletions generally <20%.

variable and generally lower than base
editing; efficiency highly dependent on
target and pegRNA design.

not yet demonstrated for multiplex in
primary T cells.

low off-target DNA editing: do not induce

minimal collateral damage.

no direct RNA editing activity.

low risk, similar to base editing.

RNP is widely used ex vivo; alternatively, mRNA mRNA electroporation is the most common; in  more complex delivery due to larger size.
research, some have used viral delivery; RNP
delivery is challenging but possible; non-viral,
lentiviral vectors; Cas9 RNP electroporation for the transient approaches (nNRNA or RNP) are
preferred.

DNA, mRNA, or RNP, but each is less
straightforward than for Cas9 or base
editors.

efficient uptake and editing with gentler on the currently inefficient.
cells” health.

preclinical stage.

not yet scalable in practice.

not currently practical for allogeneic use.

allogeneic CAR-T.

ABEs: adenine base editors; CBEs: cytosine base editors; DSBs: double-strand breaks; NHE]: non-homologous end joining; PAM: protospacer adjacent motif; pegRNA: prime

editing guide RNA; RNP: ribonucleoprotein.

https://www.ijbs.com



Int. J. Biol. Sci. 2025, Vol. 21 6890

CRISPR/Cas9 editing

Linker loop

\ 11 Cas 12a
——Cas9 K

sgRNA

" mRNA
degradation

. Target DNA
MU pAm N\
S [ A~ ' L — NTS
TN S e -
Cas 9 cleavage Base Ed'tmg Prime editing
neo 4 Reverse
i . nCas$—~ transcriptase )
NHES o0 ¥ - sgRNA Sel
oR = i
Deletion - Donor template [ ) ww]m{:mﬂ
T S

TIII=T I I m iinininin >
Homology arnis Q[ Cytidine)\ A~ UNG _ Adenine
Insertion — 3 deaminase . deaminase
i ‘ DNA replication and repair l

DNA replication and repair

C to U editing I Ato | editing

Precise insertion of
modification - promoter,
single or multiple genes

Gene correction

T A oo
I T I

Any single base conversion

C-G to T-A conversions  C-G to G-C conversions A-T to T-A conversions

CRISPR tools for gene modulation | Epigenetic modulation

Activation domain |

* Proteins

Figure 3: CRISPR-based editing and modulation platforms. CRISPR technology encompasses a versatile toolbox: Cas9 nuclease creates DNA DSBs for indels (via NHE])
or precise insertions (via HDR), while Cas12a introduces staggered cuts and Cas13d targets RNA for degradation. Base editors—cytidine or adenine deaminases fused to inactive
Cas9—enable direct C—T or A—G conversions, and prime editors (nCas9-reverse transcriptase with pegRNA) install virtually any single-base change without DSBs. Beyond
editing, dCas9 fused to VP64 or KRAB domains drives gene activation (CRISPRa) or repression (CRISPRi), Cas9-APEX2 facilitates proteome profiling, and epigenetic effectors
(TETs or DNMTs) tethered to Cas9 allow locus-specific DNA demethylation or silencing.

suppression [50]. Alternatively, CAR-Ts can be
modified to produce TGF-pB-neutralizing antibodies or
trap  proteins,  effectively = reducing  local
concentrations of TGF-p. Moreover, CRISPR/Cas9
technology allows the disruption of TGFBR2, or the
introduction of suppressors like SMAD7, thereafter
enhancing CAR-T resistance to ITME-induced
exhaustion [51, 52]. Surprisingly, TGF-p within the
ITME can be repurposed from a hindrance into a
stimulant. This is exemplified by the use of chimeric
switch receptors, which fuse the extracellular domain
of the TGF- receptor to the intracellular signaling
domain of a co-stimulatory molecule [53]. Upon
engaging TGF-f3, these modified receptors convert an

4.1 Overcoming immunosuppression

4.1.1 CRISPR/Cas9 remove the ‘immunosuppressive
chains’

The tumor microenvironment (TME) resembles a
paradoxical arena for fueling and dousing tumor
immunity.  Regrettably, the rise of an
immunosuppressive TME  (ITME) profoundly
undermines the effectiveness of immunotherapies
[48].  Deciphering and  manipulating  the
immunosuppressive networks within the ITME to
cultivate a conducive TME represents an
advancement in scaling up the success of

contemporary CAR-Tct. One promising tactic entail
combating inhibitory cytokines prevalent in the ITME,
with TGF-p being a principal adversary. Presently,
multifaceted approaches have formulated to
neutralize TGF-p’s inhibitory effects [49]. Tang et al.
introduced dominant-negative TGF-p receptors that
bind TGF- without transmitting its inhibitory signal,
rendering the cells impervious to TGF-pB-mediated

immunosuppressive cue into an immunostimulatory
one, thereby enhancing CAR-T cell function even
amidst high TGF-p levels (Figure 4). And bispecific
CAR-Ts aim to  simultaneously  address
TGF-B-mediated suppression and recognizing tumor
antigens. CAR-Ts can also be engineered to secrete
cytokines such as IL-7 and CCL19, which counteract
the deleterious effects of TGF-{3 [54].
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Otherwise, IL-12 has re-emerged via control
circuits that confine its expression to the tumor (e.g.,
hypoxia-responsive or activation-inducible
knock-ins), as well as mesothelin/MUC16 programs
exploring regional delivery in early-phase trials;
together these data support context-restricted IL-12 as
a potent, clinically tractable amplifier of
antigen-directed killing. In parallel, gene editing of
adenosine signaling (e.g., ADORA2A/A2A receptor
knockout) renders CAR-T cells refractory to
adenosine-driven suppression arising from the
extracellular ATP-to-adenosine cascade, and edits to
CD39/CD73 or enzymatic adenosine catabolism are
under active evaluation [55, 56].

Within in the ITME, malignant cells hijack
various infiltrating immune cells, encompassing
regulatory T cells (Tregs), myeloid-derived
suppressor  cells  (MDSCs), tumor-associated
macrophages (TAMs) and neutrophils (TANs), to
subvert anti-tumor immunity. Substantial efforts have
been dedicated to reprogramming these suppressive
cell populations to fuel tumor-antagonizing
responses. CAFs-derived SDF-la lures CXCR4+
MDSCs into the tumor milieu, which subsequently
elicit apoptosis in CD8+ T cells (CD8Ts) and curtail
the lytic function of CAR-Ts [57]. Targeting CAFs can,
in principle, deliver a dual benefit—blunting
CAF-driven invasion and resistance while also
diminishing MDSC infiltration. Yet eradication of
CAFs in pancreatic cancer models has paradoxically
accelerated disease progression [58], highlighting the
functional heterogeneity of CAF subsets and the
hazards of indiscriminate depletion. Accordingly,
therapeutic efforts should prioritize phenotype
modulation —reprogramming or restraining
pathogenic CAF states—rather than wholesale
clearance. In line with this microenvironment-centric
strategy, CAR-Ts engineered to co-express CXCR4
demonstrate superior antitumor activity, with
improved stromal trafficking and concomitant
reductions in MDSC ingress, yielding more durable
tumor control than conventional CAR T cells [59].
Restriction of STAT3 signaling in CXCR4 CAR-Ts
decreases the levels of TNF-a, IL-17A, and IL-6,
obstructs SDF-1a expression in an NF-kB-dependent
fashion, and consequently impedes the MDSC
recruitment into tumor site. The immunosuppressive
influences exerted by TAMs presents another barrier
to effective PC therapy [60]. CAR-Ts targeting CD123
or F4/80 can eradicate TAMs and retard tumor
progression [61, 62]. Recent studies indicate that
CAR-Ts directed against TAMs and TAM receptors —
specifically TYRO3, AXL, and MERTK-can
significantly decelerate tumor growth [63, 64].
Similarly, removing other immunosuppressive cells

presents an enticing therapeutic avenue.

4.1.2 CRISPR/Cas9-based functional genomics to
address immunosuppression

CRISPR/Cas9 screens in primary T cells have
uncovered inhibitory regulators (such as MED12 and
CCNC) that, once ablated, markedly amplify
antigen-specific proliferation and cytotoxic potency
across diverse CAR-T constructs [65]. Further
expansive CRISPR screening in human CD8Ts has
spotlighted additional inhibitory molecules, including
CBLB, RASA2, SOCS1, and TCEB2, whose disruption
therapeutically fortifies CAR-T proliferation and
cytotoxicity [66]. CBLB have been reported to regulate
T cell activation thresholds and energy [67], whose
effect on exhaustion is suggested but not confirmed.
CBLB deficiency propels CD8* T cell-mediated tumor
clearance [68]. Simultaneously, Carnevale et al.
illuminated RASA2’s role as a brake on antigen
responsiveness, showing that its deletion amplified
CAR-T’s cytotoxic prowess and tenacity across
preclinical malignancy models [69]. Equally
compelling, SOCS1 emerges as a non-redundant
intrinsic  inhibitor curbing T-cell activity and
functional breadth in vivo, whose removal robustly
rejuvenates both CD4+ and CD8* T-cell responses [70,
71]. Disruption of SOCS1’s SH2 domain substantially
boosts IL-12 sensitivity, IL-2 responsiveness, and
overall anti-tumor efficacy in CAR-Ts [71].
Translational research on human CD19-targeted
CAR-Ts confirms improved functionality and vitality
upon SOCS1 suppression [72].

Beyond immune cell-intrinsic factors, CRISPR
screening in tumor cells has identified critical
vulnerabilities that can be exploited to counteract
immunosuppression. For instance, PIPN2, a
phosphatase that dampens IFN-y signaling through
dephosphorylation of STAT1 and JAK1, negatively
regulates tumor antigen presentation and impedes
cytokine-driven tumor inhibition [73-75]. Eliminating
PTPN2 potentiates IFN-y signaling, augments antigen
presentation, and intensifies cytokine-driven tumor
growth inhibition, suggesting potential therapeutic
benefits from its inhibition [73]. Similarly,
receptor-interacting protein kinases (RIPKs) such as
RIPK1 and RIPK2 orchestrate immune evasion and
targeting ~ RIPK1  reduces  recruitment  of
immunosuppressive ARG1+ myeloid cells and primes
tumors for immune attack [76-79], while RIPK2
deficiency disrupts the desmoplastic TME, ushers in
an upsurge in MHC-1 surface presentation by
curtailing the NBRl-mediated pathway of
autophagy-lysosomal degradation, and sensitizes
tumors to ICB, resulting extended survival [80].
RIPK3, frequently silenced by oncogenes such as
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including AXL, BRAF, and notably, MYC, which
limits necroptosis by impairing RIPK1-RIPK3
interplays [81].

4.1.3 CRISPR/Cas9 rewires cytokine networks to
counteract immunosuppressive barriers

Modulation of IFN-y pathway further shapes the
TME and CAR-T function. For instance, murine
Qa-1b (encoded by H2-T23), homolog to human
HLA-E, is upregulated by IFN-y receptor signaling
and contributes to tumor resistance before and during
CAR-Tct [82]. Blocking Qa-1b’s inhibitory receptor,
NKG2A, enhances therapeutic efficacy, corroborated
by in vivo studies in PDAC mouse models where
Qa-1b suppression sensitized tumors to ICB therapy
[83]. IFN-y production by NK cells during CAR-T
therapy can paradoxically drive both beneficial and
inhibitory effects—enhancing endogenous immunity
while inducing Qa-1b-mediated resistance [84].
Compounding this complexity, tumor-intrinsic
IFN-y-receptor signaling shapes CAR-T susceptibility
in a context-dependent manner. Across available
datasets, loss-of-function alterations in IFNGR1 or its
downstream kinases JAK1/JAK2 exert little
measurable impact on leukemia/lymphoma
responses to CAR-Ts, yet in solid tumors—including
glioblastoma —abrogation of this axis consistently
promotes resistance. Mechanistically, intact IFN-y
signaling amplifies a suite of tumor programs that
cooperate with CAR-T activity —enhanced antigen
processing/ presentation, upregulation of adhesion
and death-receptor pathways (e.g.,, ICAM-1, FAS),
and chemokine remodeling—whereas pathway loss
diminishes immunologic visibility and T-cell
engagement, blunting cytotoxicity [85]. This
divergence argues for routine profiling of the IFN-y
pathway and for combination strategies that restore
or bypass IFN-y responsiveness in solid-tumor
settings.

4.1.4 Leveraging base editing to disarm
immunosuppressive pathways in CAR-Ts

BE technologies are emerging as powerful tools
to  enhance @ CAR-T  cell  resistance to
immunosuppressive cues in the TME. Moreover, ABE
targeting the N74 glycosylated residue of PD1
effectively downregulates PD-1 expression in
CAR-Ts, resulting in enhanced cytotoxic activity both
in vitro and in vivo [86]. Pule et al. developed a novel
protocol to generate circular BE RNA (circBE) instead
of traditional linear BE mRNA, resulting in clinical
dose CAR-Ts with lower PD1 expression pattern [87].
Collectively, these advancements highlight the
transformative potential of BEs for the precise, safe,
and efficient engineering of CAR-Ts for cancer

treatment.

4.2 Enhancing efficiency

Long-term persistence of CAR-T cell function is
crucial for durable anti-tumor immunity. Gene
editing approaches have focused on reprogramming
T cell metabolism and transcriptional states to favor
the generation and maintenance of memory T cell
(Tmem) within the nutrient-deprived, suppressive
TME (Figure 4).

4.2.1 CRISPR/Cas9 approaches to overcome
exhaustion and boost memory formation in CAR-Ts

The potency of CAR-Ts can be augmented by
silencing genes that make them vulnerable to
inhibitory signals. For example, CAR-Ts lacking
NR4A demonstrated superior tumor regression in
mice [88]. Pulling from cancer’s playbook, Roybal et
al. integrated 71 mutations —identified in neoplastic T
cells—into CAR-Ts, with the fusion CARD11-PIK3R3
standing out [89]. This amalgamation intensifies
signaling through the CBM complex, a linchpin for T
cell activation and functionality during antigen
recognition [90]. In multiple cancer-bearing mouse
models, tumor burdens diminished markedly.
Despite the specter of these powered-up CAR-Ts
metamorphosing into malignancies, animal studies
have yet to stoke the fires of safety apprehensions.
Additionally, the potency improvement permits
lower dosage and obviated the necessity for
lymphodepleting chemotherapy, which carries risks
of mutagenesis and secondary malignancies [91].

Typically, the curtailed lifespan of CAR-Ts is
ascribed to the onset of exhaustion states, which
constitutes a significant impediment to their
therapeutic efficacy [92, 93]. In patients achieving
favorable remissions, the infused CAR-Ts generally
manifest lower levels of exhaustion markers (e.g.,
PD-1, LAG-3, and TIM-3) [94]. These features
predominantly represent ICs that compel CTLs to
lapse into states of dormancy or exhaustion. Several
critical drivers have been ascertained. For instance,
the engagement of PD-L1 with PD-1 controls multiple
potential destinies for activated CD8Ts, encompassing
anergy, exhaustion, and apoptosis [95]. Yet PD-1 is
also a state marker of recent antigen encounter: in
defined settings, PD-1hish CAR-Ts display superior
immediate cytotoxicity and antitumor protection
relative to PD-1lw counterparts, while adoptive
transfer of PD-1high cells alone fails to achieve durable
tumor control, highlighting a distinction between
short-term effector capacity and long-term fitness [96].
Tumor context further modulates checkpoint biology;
in ovarian cancer, intracellular (rather than surface)
PD-L1 is enriched within cytotoxic T cells, offering a
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plausible explanation for the muted activity of
conventional PD-1/PD-L1-directed agents in this
setting [97]. Veritably, the concurrent administration
of CAR-Tct and anti-PD-1 antibodies has yielded
encouraging outcomes in patients [98]. Furthermore,
enhanced anti-tumor efficacy has also been observed
in preclinical studies through the silencing of the PD-1
axis within CAR-Ts via CRISPR/Cas9 [99]. Given the
pivotal  roles of other inhibitory immune
checkpoint receptors, such as LAG-3, TIM-3, and
TIGIT, in concert with PD-1 function, concurrent
intervention of multiple pathways is projected to
further = enhance the CAR-T  performance.
Comparative studies show that dual PD-1/TIGIT
suppression yields a distinctive synergy that
surpasses PD-1 silencing alone, whereas pairing PD-1
with TIM-3, LAG-3, or CTLA-4 fails to provide
incremental benefit [100]. Mechanistically, PD-1
deletion primarily amplifies acute effector function,

while TIGIT inhibition constrains terminal
differentiation and transcriptional exhaustion,
preserving a stem-like pool that sustains

responses — together accounting for the observed
synergy [100]. This concept has advanced to the clinic,
with a phase 1/2 trial of PD-1/TIGIT-edited CD19
CAR-T in adults with relapsed/refractory DLBCL
(NCT04836507). By contrast, CTLA-4 editing
illustrates the context dependence of multiplex
strategies: loss of CTLA-4 wunleashes CD28
costimulation and stabilizes CAR surface expression
under high antigen load, improving tumor control
when targeted alone, yet this benefit is not
recapitulated when CTLA-4 and PD-1 are
co-edited —pointing to non-additive or even
countervailing circuit interactions [101]. Collectively,
these data argue for  mechanism-guided,
indication-specific checkpoint engineering rather than
indiscriminate stacking, with PD-1/TIGIT emerging
as a leading axis and CTLA-4 manipulation reserved
for settings dominated by CD28-driven activation.

4.2.2 Targeting epigenetic and metabolic pathways in
CAR-Ts via CRISPR/Cas9

Reprogramming  epigenetic  signatures to
stabilize memory phenotypes offers additional
avenues for extending CAR-T persistence. For
example, knockout of TET2, involved in DNA
demethylation, promotes robust clonal expansion
with a durable memory profile [102]. TET2 knockout
induces a central memory phenotype, fostering clonal
expansion of CAR-Ts. Despite the observed long-term
remission in a patient with chronic lymphocytic
leukemia using TET2-deficient CAR-Ts, research has
shown that biallelic TET2 disruption, coupled with
sustained expression of factors like BATEF3, can

precipitate excessive proliferation in  an
antigen-independent fashion in CAR-Ts [103, 104].
Enforced BATF3 expression programs CAR-Ts
toward a memory-like state and counteracts
transcriptional and epigenetic features of exhaustion
[105]. Importantly, BATF3 overexpression alone does
not elicit adverse effects in T cells, yet risk becomes
context-dependent: sustained BATF3 in combination
with high-risk genetic backgrounds (for example,
biallelic TET2 loss) can drive antigen-independent
clonal expansion, and in malignant T-cell contexts
BATF3 cooperates with IRF4 or engages an IL-2R
super-enhancer module, conferring oncogenic
properties  [106, 107].  These  argue  for
activation-linked or titratable BATF3 designs that
preserve its memory-promoting and anti-exhaustion
benefits while avoiding constitutive, high-level
expression in permissive genomic contexts.

Metabolic reprogramming has been highlighted
by genome-wide CRISPR screens in CD8Ts, which
identified genes such as PRODH2, Ccnblipl,
Sreklipl, and WDR37 as positive regulators of T cell
degranulation and function [108, 109]. Chief among
them, PRODH2 emerged as a pivotal player in
amplifying cancer cell lethality. Elevated PRODH2
reprogrammed T cell metabolism, invigorating T cell
vitality and tumoricidal capacity [109]. The story
underpinning PRODH2’s influence on T cell
functionality appears to lie in its recalibration of
proline metabolism, a crucial player in T cell
anti-tumor influence [110]. Although the impact of
PRODH2 on Twmgem differentiation remains largely
unexplored, modulation of metabolic pathways holds
great promise for extending CAR-T persistence.
Further investigations have explored the roles of
nutrient signaling pathways in memory formation.
For instance, amino acid transporters Slc7al and
Slc38a2 were found to hinder Tyewm differentiation by
activating mTORC1 signaling, while targeting these
transporters or the GDP-fucose-Pofutl-Notch axis
can selectively enhance Tvem development [111].

4.2.3 Leveraging scCRISPR screens to reprogram
CAR-T cell fate and longevity

Transcriptional programming is another avenue
for enhancing CAR-T efficiency. Single-cell CRISPR
(scCRISPR) has enabled the dissection of gene
regulatory networks (GRNs) underlying T cell fate.
Zhou et al. have leveraged scCRISPR screens to
reconstruct the GRNs governing the fate of CD8+
cytotoxic T lymphocytes (CTLs) in cancer [112]. They
revealed  three  key  transcriptional  axes
(IKAROS/TCF-1, ETS1/BATF, and RBPJ/IRF) that
shape CTL heterogeneity, each unfurling new
therapeutic vistas [112]. IKAROS, encoded by IKZF1,
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plays a nuanced role: while it facilitates the
maturation of precursor exhausted T cells (Tpex) into
fully exhausted T (Tex) through TCF-1 modulation, it
also restrains metabolic and mTORC1 activity to
prevent excessive differentiation [113]. IKZF1 loss
impairs transition from Tpex to Tex, possibly by
affecting metabolic competence [113]. In contrast, by
manipulating BATF, ETS1 curtails mTORC1 activity
and metabolic rewiring, thus steering the
differentiation of Tpex towards Tex. ETS1 disruption
bolsters anti-tumor immunity and ICB efficacy [113].
Elevated RBPJ levels links to terminal CTL exhaustion
and hyperresponsiveness to immunotherapies,
marking RBPJ as a potential target for reprogramming
Tex cells and in synergy with ICB. The underlying
mechanism involves NOTCH-independent RBPJ
signature that hampers IRF1 function [114, 115]. These
findings offer insights into reprogramming CTL fates,
promising advancements in CAR-T efficacy.

In clinical settings, CRISPR screening elucidates
resistance pathways and refines therapeutic
strategies. For instance, PRRX2 was identified as
central to androgen receptor inhibitor resistance in
prostate cancer, amenable to reversal via BCL2 and
CDK4/6 inhibitors (CDK4/6i) [116]. Moreover,
TGEFp3 serves as a predictive biomarker in TNBC for
palbociclib  therapy, where combination with
CDK4/6i  treatment  demonstrates  enhanced
anti-proliferative synergy, suggesting innovative
approaches for overcoming therapeutic resistance
[117,118].

4.2.4 Base editing-driven enhancement of CAR-T
fitness and longevity

The application of high-throughput base editing
is rapidly advancing CAR-T engineering, especially in
generating universal and highly persistent CAR-T
products. Multiplexed base editing, for instance, has
facilitated the concurrent disruption of CD52, CD7,
and TRBC loci, paving the way for the creation of
universally deployable CD7-targeting CAR-Ts
(BE-CAR?7) [119]. Clinical application of BE-CAR7 has
led to molecular remission and successful immune
reconstitution in patients with refractory T-cell ALL,
underscoring the clinical potential of BE platforms.

Further, BE technology allows for the
introduction of gain-of-function mutations into genes
central to T cell activation and persistence.
High-throughput BE screening have facilitated the
generation of thousands of clinically significant
variants across critical genes, including PIK3CD,
PIK3R1, LCK, SOS1, AKT1, and RHOA [120].
Specifically, BE-induced gain-of-function (GOF)
mutations in PIK3CD and PIK3R1 in T cells, including
those engineered with a melanoma-specific T cell

receptor or in various generations of CD19 CAR-Ts,
lead to enhanced signaling, cytokine production, and
the ability to effectively kill melanoma and leukemia
cells [120]. These GOF mutations, unlike
loss-of-function (LOF) mutations or silent controls,
contributed to improved CAR-T cell efficacy in
leukemia cell killing and cytokine production,
demonstrating the potential of BE to optimize
CAR-Tct and improve their clinical outcomes.

4.3 Improving specificity

The specificity of CAR-Ts is central to
minimizing off-target effects and maximizing
anti-tumor selectivity. Gene editing technologies have
enabled the refinement of targeting strategies and the
prevention of undesirable T cell-T cell interactions
(fratricide), as well as the mapping of molecular
circuits that govern specificity and exhaustion (Figure
4).

4.3.1 Leveraging CRISPR/Cas9 for antigen-specific
CAR-T engineering and fratricide resistance

A significant challenge in developing CAR-T
therapies for T cell malignancies is the phenomenon
of fratricide —the mutual destruction of CAR-Ts that
occurs when their target antigen is shared between
malignant and healthy T cells, including the CAR-T
product itself. To overcome this, CRISPR/Cas9 have
been leveraged to knock out endogenous T cell
antigens, allowing for the production of CAR-Ts
resistant to fratricide. CD7 and CD5 are two
well-characterized targets in this context. CD7 is
broadly expressed on T-cell acute lymphoblastic
leukemia (T-ALL) cells as well as on normal T cells,
leading to self-recognition and rapid elimination of
CAR-Ts unless the antigen is ablated. Recent studies
have demonstrated that CRISPR-mediated knockout
of CD7 (CD7KO) in donor T cells enables efficient
generation of CD7-targeted CAR-T products that are
resistant to fratricide, expand robustly in vitro, and
exhibit potent anti-leukemic activity in preclinical
models [121]. Early-phase clinical trials have shown
that CD7KO CAR-Ts are not only feasible to
manufacture at scale but can also mediate significant
anti-tumor responses in patients with
relapsed/refractory T-ALL, while avoiding severe T
cell aplasia [122, 123]. Similarly, CD5 is another pan-T
cell marker frequently targeted in T cell leukemias
and lymphomas. Knockout of CD5 (CD5KO) using
CRISPR/Cas9 or TALENS prior to CAR transduction
preserves CAR-T cell viability during manufacturing
and prevents fratricidal killing upon antigen
engagement. Studies have shown that CD5KO
CAR-Ts retain cytotoxicity against malignant CD5+ T
cells while maintaining an early memory phenotype,
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increased expansion capacity, and favorable in vivo
persistence [124, 125]. Notably, Ottaviano et al.
demonstrated in a first-in-human phase [ trial that
CD5KO CD5-CAR-Ts can be manufactured
efficiently, are safe, and induce durable remissions in
patients with T cell lymphoblastic leukemia [125].

Beyond CD5 and CD7, knockout of other lineage
markers (e.g., TRAC for universal allogeneic CAR-Ts)
[126] and the use of safety switches are also under
investigation to further improve the manufacturing
and clinical performance of CAR-T therapies for T cell
malignancies. Antigen knockout approaches such as
CD5KO and CD7KO represent a pivotal innovation in
the field of T cell malignancy immunotherapy,
allowing for the scalable generation of potent,
persistent, and fratricide-resistant CAR-T cell
products.

Additionally, CRISPR-based forward genetic

screens in tumor cells have accelerated the
identification of candidate neoantigens and
immunomodulatory  targets,  supporting  the

development of more selective and potent CAR
constructs. High-throughput screening not only
uncovers antigens with tumor specificity but also
identifies molecules that enhance T cell function and
resistance to exhaustion. scCRISPR screening has
provided granular insight into the regulatory axes
that influence specificity and exhaustion.

4.3.2 CRISPR/Cas9 enables dual-target CAR-T
engineering to overcome antigen escape

The limited availability of true tumor-specific
antigens (TSAs) and the frequent antigen-loss escape
seen with tumor-associated antigens (e.g., mesothelin)
constrain single-target CAR-T efficacy (Figure 4). To
counter antigen loss and heterogeneity, dual-target
strategies have gained traction. These are
implemented as tandem/bispecific CARs, bicistronic
“dual-CAR” designs, or synNotch/logic circuits [127].
By requiring recognition of two antigens, these
formats lower the probability that tumor clones can
evade killing through down-modulation of a single
target, broaden the recognition spectrum across
heterogeneous tumors, and—when logic gating is
used —can raise activation thresholds to improve
functional selectivity and reduce on-target/off-tumor

engagement.
Clinical experience in hematologic malignancies
supports these concepts: programs such as

CD19/CD22 and CD19/CD37 have reported high
response rates with fewer antigen-negative relapses
relative to single-antigen approaches [128, 129]. For
example, tandem CD19/CD20 CAR-T (tanCAR-T)
mitigates target downregulation, and a single-arm
phase I/Il study showed meaningful activity in

patients relapsing after CD19 CAR-T [130]; similarly,
dual CD20/CD19 products have yielded encouraging
outcomes with >80% objective responses in some
cohorts [131]. In solid tumors, where TSAs are scarce,
pairing a context sensor with a killing CAR can
improve selectivity: ALPPL2 has emerged as a TSA in
ovarian cancer and mesothelioma [132], and
embedding ALPPL2 sensing within synNotch circuits
limits tonic signaling and favors a memory-like state
while subsequently driving CARs against HER?2,
mesothelin, or MCAM, improving control in
preclinical models [133].

Dual-targeting is not a panacea. Simultaneous or
convergent down-regulation of both
targets —although less likely—can still mediate
escape; AND/NOT-gate designs may become inactive
if one required antigen is lost. Therapeutic efficacy
remains dependent on in vivo persistence, which is
curtailed by exhaustion and the ITME. Also,
engineering and producing dual-target products
increases vector size/complexity, places higher
demands on potency and quality-control assays
(viability, dual-arm expression, and function).
Furthermore, extending these strategies to T-cell
malignancies introduces unique challenges, notably
fratricidal effects due to shared antigen expression
among CAR-Ts [121]. In an innovative study,
researchers employed CRISPR/Cas9 technology to
excise CD5 and CD7 during the production of
bispecific CARs, resulting in fratricide-resistant fully
human CD5/CD7 bispecific CAR-Ts that exhibit
powerful  anti-tumor activity against T-cell
malignancies [134]. Interestingly, tandem CD5/CD7
CARs maintain cytolytic durability, showcasing
superior lysis of CD7—tumor cells than dual CAR
constructs [134]. Although complete T-cell aplasia has
not been uniformly reported, the risk of profound
immunodeficiency warrants vigilance. In selected
high-risk settings, bridging allogeneic HSCT after
achieving deep molecular remission with CD5/CD7
bispecific CAR-T may be considered; prospective
studies are needed to define its role.

4.3.3 Refining CAR-T cell specificity through base and
prime editing of antigenic epitopes

BE has been harnessed to engineer precise
modifications in epitopes of the pan-leukocyte
antigen CD45, a crucial target in UCAR-T [135]. The
introduction of function-preserving mutations via BE
has yielded epitope- edited CD45 CAR-Ts resistant to
fratricide yet capable of exerting robust anti-tumor
effects against diverse hematologic malignancies
[135]. Furthermore, when applied to HSCs, this
epitope  editing  confers  protection  from
CAR-T-mediated OTOT while preserving the
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physiological functions of CD45, thereby establishing
a safe and versatile foundation for CD45-directed
immunotherapeutic interventions [135].

Fratricide, which results from CAR-Ts
recognizing antigens expressed on their own surface,
remains a challenge in T cell malignancy therapy. To
address the problem of CAR-T ‘fratricide’, where
shared antigens such as CD3 and CD7 lead to mutual
CAR-T cell attacking, BEs have been employed to
disrupt TCR/CD3 and CD7 by introducing stop
codons or eliminating splice sites [136]. This results in
fratricide-resistant CAR-Ts that retain potent
anti-leukemia activity with no detectable off-target
effects on CAR-T specificity [136]. Furthermore, prime
editing has demonstrated value in the precise
modification of other clinically relevant antigens.
Through meticulous optimization, the PE represents a
dramatic improvement in editing efficiency and
product purity. Zhang et al harnessed PEs to modify
the CD123 epitope on HSCs and progenitor cells,
preserving essential protein expression and cellular
functions critical for hematopoietic integrity [137].
This targeted editing confers robust protection to
healthy cells against CAR-T-mediated cytotoxicity.
The PE- engineered HSPCs were resistant to CAR-T
cell lysis in vivo and in vitro for treating relapsed AML
[137]. Despite these remarkable advances, BE and PE
technologies still face certain limitations compared to
conventional CRISPR/Cas9 editing. These include
lower editing efficiency in some cell types and
constraints related to the range of targetable
sequences. Ongoing advances are expected to further
improve their applicability and safety profiles in
CAR-T cell engineering.

4.4 Reinforcing infiltration

Insufficient infiltration of CAR-Ts into solid
tumors continues to impede therapeutic efficacy.
Chemokine gradients constructed by neoplastic cells
often serve as beacons, guiding immune cells toward
malignant foci [138]. Equipping CAR-Ts to express
tailored chemokine receptors (CCRs) responsive to
these gradients holds promise for stimulating their
tumor-homing capacity [139] (Figure 4).

4.4.1 CRISPR/Cas9 improves CAR-T homing
and infiltration in solid tumors

Chemokine CCL2 is broadly expressed across
various malignancies. CCR2b, the cognate receptor for
CCL2, has demonstrated a remarkable propensity to
navigate towards CCL2-enriched microenvironments,
thereby mobilizing CAR-Ts permeating into
high-CCL2-expressing =~ malignancies  such as
neuroblastoma and melanoma [140]. Functional
analyses further underscore the enhanced migratory

capacity conferred by CCR2b and CCR4 expression in
mesothelin-targeted CAR-Ts [141]. These
CCR-engineered CAR-Ts demonstrate elevated
cytotoxicity and robust secretion of cytokines such as
IL-2, IFN-y, and TNF-a [141]. Additionally,
concurrent expression of IL-7 and CCR2b significantly
promotes trafficking and persistence of GD2-specific
CAR-Ts [142]. While CCR2b improves migration,
there is a risk it could lead CAR-Ts to normal tissues
as well, which can cause off-target effects and damage
healthy cells. Brain metastases are traditionally
deemed an insurmountable fortress for adoptively
transferred CAR-Ts due to the BBB. Yet, the detection
of CCL2 gradients in both primary and
brain-metastatic NSCLC sheds light on exploiting this
chemotactic signal to accelerate CAR-T infiltration
across the BBB [143]. Employing
CRISPR/Cas9-mediated insertion of a CCR2b
expression module into B7-H3-targeted CAR-Ts
notably augmented their selective migration and
tumor-specific  activity,  achieving  sustained
regression of cancerous lesions without harming
adjacent healthy brain tissue [144]. Despite these
advances, caution is warranted. CAR-Ts engineered
with CXCR2, receptive to a plethora of chemokines,
have yielded only marginal improvements in
anti-tumor activity. This limited efficacy is
compounded by the propensity of these cells to
traverse into a broad array of normal tissues [144].
Thus, fine-tuning CCR expression in CAR-Ts requires
careful consideration of the balance between
therapeutic benefits and potential adverse outcomes.

4.4.2 CRISPR/Cas9 rewires intrinsic signaling

Beyond adding homing receptors, CRISPR can
improve infiltration by editing genes that gate IFN-y
responsiveness and chemokine networks on either the
T-cell or tumor side. In tumor cells, CRISPR
loss-of-function of PTPN2 amplifies IFN-y-STAT1
signaling and upregulates CXCL9/10/11 and CCLS5,
which increases T-cell recruitment and sensitizes
tumors to adoptive T-cell therapies; complementary
CRISPR deletion of PTPN2 in engineered T cells
enhances effector function and persistence, providing
a bidirectional route to boost trafficking and function
in solid tumors [145]. While safety and durability
require careful evaluation, these CRISPR
perturbations outline tractable nodes to raise
chemokine gradients and facilitate deeper CAR-T
ingress into immune-excluded tumors.

4.5 Optimizing CAR expression and safety

Effective activation of T cells necessitates TCR
engagement with antigen presentation and
costimulatory signals. However, the expression of
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endogenous TCR interfere transgenic receptors in
CAR-Ts, disrupting signaling cascades and cellular
trafficking. TCR excision, a maneuver enhancing the
specificity and activity of CAR-Ts, has shown promise
in mice models [146] (Figure 4).

4.5.1 Precision control of CAR expression via
CRISPR/Cas9

CAR transgene via CRISPR/Cas9 at the TRAC
locus in human T cells, effectively silencing
endogenous TCR expression while placing CAR
expression under the baton of the native promoter
[147, 148]. This elegant move addresses two
longstanding issues of CAR-Tct: the capriciousness of
CAR levels and the disruptive influence of
endogenous TCR activity. The result is a notable
improvement in performance, particularly in ALL
mouses [148]. Furthermore, this approach mitigates
tonic CAR signaling, facilitates efficient CAR
internalization and re-expression of CARs following
antigen exposure, and delays premature effector
T-cell differentiation and exhaustion. Innovative
designs to fine-tune CAR-T activation thresholds is
endless. Rogelio et al. developed a dual-recognition
mechanism amalgamating low- and high-affinity
ultrasensitive circuits, enabling cytotoxic T cells to
discriminate targets antigen densities via a sigmoidal
response curve [149]. Initially, a low-affinity receptor
serves as an antigen-sensitive gate, priming cells for
subsequent  transcriptional activation  upon
encountering high-density HER2 expression, thus
sparking CAR expression and aggrandizing both
proliferative and cytotoxic responses [149].

Aimed at conquering CAR-T toxicities, cell lysis
and apoptosis can be ignited by calling up specific
suicide genes with death switches. This affords the
precision to deactivate therapeutic cells upon
unforeseen expansion or prophylactically, in
scenarios where biomarkers like IFN-y, IL-13, and
MIPla indicate impending adverse events [150].
Beyond, it may also shed light on who will suffer from
relapse or adverse effects from CAR-Tct. Two primary
suicide platforms are the herpes simplex virus
thymidine kinase (HSV-tk) system and inducible
caspase 9 (iCasp9) [151]. The former operates by
phosphorylating certain nucleoside analogues to
generate GCV triphosphate that suppresses DNA
synthesis and triggers cell death. The later exploits an
inducible caspase 9 safety switch (e.g.,, AP1903,
AP20187 as inducers) to selectively eradicate suicide
gene-enriched cells (Figure 4) [152-154]. Alternative
strategies involving NK cell recognition of CD20 or
EGFRt, although effective, draw additional genetic
materials and arouse effector signals externally, which
may breed immunogenic responses and suboptimal

transgene expression [155].

To refine CAR expression control further,
Patterson et al. handled Cas9 ribonucleoproteins to
target exon 1 of the UMPS gene, a key index for
auxotrophic cell growth [156]. This nutrient
metabolism-directed CAR design allows CAR-T cell
activity to be meticulously regulated through uridine
metabolism. In parallel, Kwong et al. have developed
photothermal-sensitive intra-tumoral CAR-Ts,
incorporating a synthetic gene switch that responds to
mild temperature stimuli (40-42°C) [157]. When these
cells are activated by gold nanorods in vivo, they
secrete super-agonist IL-15 and are further equipped
with a bispecific T cell engager targeting the NKG2D
receptor. This design enables precise redirection of
CAR-Ts towards antigen-negative tumors under
thermal control. Concurrently, a focused ultrasound
(FUS) device, capable of being initiated by
short-pulsed FUS in vitro, has been integrated into the
CAR backbone with high specificity [158]. When
applied to primary tumor sites in murine models,
MRI-guided FUS selectively heats the environment to
42°C, triggering CAR-T activation that targets
malignant cells while sparing adjacent healthy tissues
[158]. This approach of direct FUS control over
inducible CAR-T activity in vivo presents a
groundbreaking, non-invasive therapeutic option for
solid tumors. Complementing these sophisticated
control mechanisms, reversible ‘ON’ and ‘OFF
switches for CAR-Ts have been drafted, ruled by
small molecules like resveratrol, lenalidomide,
dasatinib, rimiducid, and rapamycin. For instance,
CAR-Ts outfitted with a resveratrol-responsive
transcriptional regulatory device can achieve
controllable  anti-cancer cytotoxicity, balancing
therapeutic potency with safety through a
resveratrol-titratable system [159].

4.5.2 Base editing platforms for site-specific and safe
CAR transgene integration

A critical aspect of safe and effective CAR-T
therapy is the site-specific and stable expression of the
CAR transgene. The RNA aptamer-driven Pin-point
BE system offers a highly efficient and accurate
approach for performing gene knockouts and
integrating transgenes at specific sites in T cells [160].
When compared to CRISPR/Cas9, this BE platform
enables simultaneous multiplex gene knockouts and
CAR integration in a single step while exhibiting
superior editing efficiency, higher purity, and a
substantially lower incidence of chromosomal
translocations [160]. This research highlights the
potential of the Pin-point BE system to achieve more
precise and effective genome editing in advanced
cellular therapies. Furthermore, integrating BE with
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CRISPR/Cas9 nuclease-mediated knock-in
techniques enables the targeted insertion of CAR
constructs into the TRAC locus, alongside knockout of
MHC class I and II genes [86]. The resulting
engineered CAR-Ts, which lack both TCR and MHC
molecules, exhibit resistance to allogeneic T cell
attacks in vitro [86]. Together, these advances illustrate
how base and prime editing are reshaping the

landscape of CAR transgene engineering—
maximizing safety, precision, and therapeutic
flexibility.

5. Current challenges of Cas9-based
CAR-T engineering

Integrating CRISPR/Cas9 into the vanguard of
CAR-Tcts heralds a shift, permitting unparalleled
precision in the bespoke tailoring of T cells by
enabling insert and/or remove pertinent molecular
elements (Figure 4). This confers upon CAR-Ts an
augmented therapeutic response. Numerous studies
have validated the safety and practicability of
multiplex CRISPR/Cas9 engineering in T cells for
oncological applications. Nowadays, a proliferation of
base research and clinical trials exploring
CRISPR/Cas9-fortified =~ CAR-T  modalities is
unfolding. We have characterized the key current
gene-edited CAR-T products at the clinical-stages
(Table 2).

Concerns regarding genotoxicity and long-term
safety remain significant obstacles to clinical
translation. The most salient risks include off-target
DNA editing, chromosomal rearrangements, and
possible oncogenic transformation (Table 1).

Table 2. Key clinical trials involving gene-edited CAR-T products

CRISPR/Cas9 relies on sgRNA-directed recognition
of target DNA sequences. However, imperfect
complementarity can result in DSBs at unintended
genomic loci, leading to off-target indels or larger
genomic alterations. These off-target mutations can
disrupt tumor suppressor genes or activate
proto-oncogenes, raising the risk of malignant
transformation. Advances such as high-fidelity Cas9
variants and improved guide design algorithms have
reduced off-target rates, yet comprehensive
genome-wide assessment remains necessary for each
product [161]. Multiplex gene editing, increasingly
used to engineer allogeneic or “stealth” CAR-Ts,
involves simultaneous DSBs at multiple loci. This
significantly increases the risk of chromosomal
translocations, large deletions, or other structural
variants [162]. Recent clinical and preclinical studies
have reported detectable frequencies of chromosomal
translocations in triple- or quadruple-edited T cells
[163, 164]. While the functional impact of
low-frequency rearrangements is unclear, rare cases
of CAR-T-related subsequent T-cell malignancies
have been described [35, 37], underscoring the need
for robust screening strategies. There is emerging
evidence linking genome-editing-related genotoxicity
with the development of secondary malignancies after
CAR-Tct [37]. Mechanistically, these events may
involve insertional mutagenesis, off-target effects in
proto-oncogenes, or  persistent chromosomal
instability. Longitudinal monitoring and molecular
tracking are now increasingly recommended as part
of post-infusion surveillance in clinical trials.

Trials products Diseases CAR Editing  Key genes edited Delivery Method Clinical =~ Ref
Target tools Phase
CTX110 (Allogeneic) R/RLBCL CD19 Cas9 TRAC, B2M (knockout) Cas9 RNP electroporation Phase I [165,
166]

CTX120 (Allogeneic) R/RMM BCMA Cas9 TRAC (CAR insertion), B2M (KO)  Cas9 RNP + rAAV6 electroporation Phase I [8]

CTX130 (Allogeneic) R/RT-ALL, RCC CD70 Cas9 TRAC (CAR insertion), Cas9 RNP + rAAV6 electroporation Phase I [167]
B2M/CD70 (KO)

CB-010 (Allogeneic) R/R B-NHL CD19 Cas9 TRAC (CAR insertion), PDCD1 Cas9 RNP + rAAV6 electroporation Phase I [168]
(Ko)

CB-011 (Allogeneic) R/RMM BCMA Casl2a  TRAC (CAR insertion), B2M Casl12a RNP + rAAV6 Phase I [169]
(HLA-E knock-in) electroporation

TT52CAR19 (Allogeneic) Pediatric R/R B-ALL CD19 Cas9 TRAC/CD52 (knockout) Lentiviral vector Phase I [170]

GC008t (MPTK-CAR-T)
(Autologous)

mesothelin-positive solid Mesothelin Cas9
tumors

PDCD1, TRAC (knockout)

(CAR+sgRNA)+Cas9
electroporation

Cas9 RNP Phase I [171]

PD1-19bbz (BRL-201) R/R B-NHL CD19 Cas9 PDCD1 (site-specific CAR Cas9 RNP + dsDNA Phase | [172]

(Autologous) knock-in)

BE-CAR?Y (Allogeneic) R/RT-ALL CD7 CBE TRBC/CD7/CD52 (inactivation by Base editor mRNA Phase I [119]
base edit)

CTX112 (Next-gen R/R BCL CD19 Cas9 TRAC/B2M/ TGFBR2/ AAV Phase I/11 [173]

allogeneic) ZC3H12A

BEAM-201 R/RT-ALL or T-LL CD7 ABE TRAC/CD7/CD52/PD1 Base-editor mRNA Phase I/11  [174]
(quadruple edits)

TYU19 (SLE trial) SLE (autoimmune) CD19 Cas9 TRAC (allogeneic donor cells) Cas9 RNP electroporation Phase I [175]
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R/R B-ALL, relapsed/refractory B-cell acute lymphoblastic leukemia; RCC, renal cell carcinoma; R/R BCL, relapsed/refractory B-cell malignancies; R/R B-NHL,
relapsed/refractory B-cell non-Hodgkin lymphoma; R/R LBCL, relapsed/refractory large B-cell lymphoma; R/R MM, relapsed/refractory multiple myeloma; R/R T-ALL,
relapsed/refractory T-cell acute lymphoblastic leukemia; SLE, systemic lupus erythematosus; T-LL, T-cell lymphoblastic lymphoma.
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Figure 5: Novel frontiers of CAR-T cell therapy. The next-generation CAR-T combines modular, off-the-shelf cell platforms and expanded effector repertoires (e.g.
CAR-NK, iNKT, macrophages) with smart localized delivery, RNA-based and in vivo manufacturing, precision genome editing and automation, and rigorous quality and regulatory
controls—all aimed at making CAR-T therapy safer, more scalable, broadly accessible, and effective against solid tumors.

To address these challenges, the field is adopting
safer editing approaches (e.g., base editing, prime
editing), transient delivery formats (RNP or mRNA),
high-fidelity nucleases, and rigorous cell product
release criteria, including genome-wide genotoxicity
assessment and clonal tracking. Nonetheless, given
the potentially irreversible nature of genomic
changes, cautious interpretation of early clinical
success is warranted, and longer follow-up is
essential.

6. Novel technological platforms and
innovations in CAR-Tct

Ensuring the sustained activity of CAR-Ts in vivo
is crucial for achieving long-term therapeutic
outcomes. Innovative approaches, such as the
development of universal immune receptor platforms
like OmniCAR, allow for controllable T-cell activity
and multi-antigen targeting with a single cell product

(Figure 5). This modular system enables on-demand
and adjustable T-cell responses, potentially enhancing
persistence and efficacy, especially in solid tumors.
While the modularity of OmniCAR allows for
interchangeable targeting domains, the clinical
feasibility and dosing kinetics of tag-based control is
not yet well studied. In addition, overcoming the
challenges posed by solid tumors requires novel
delivery strategies. Localized delivery mechanisms,
such as gel-based systems and microneedle patches,
have been developed to enhance CAR-T cell
infiltration and activity —within solid tumor
environments. For example, hydrogel-based delivery
systems have been engineered to sustain CAR-T cell
release at tumor sites, improving therapeutic efficacy.
Innovations in RNA-based delivery systems, notably
circRNA, have improved the efficiency, precision, and
cost-effectiveness of manufacturing edited CAR-Ts.
The ability of circRNA to mediate enhanced
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translation efficiency without expensive modified
linear mRNA production presents a scalable and
cost-effective alternative suitable for clinical-scale
production [176].

Innovations in in vivo CAR-T cell manufacturing
strategies are being explored to streamline production
and reduce costs. Bioinstructive materials and rapid
generation techniques aim to produce CAR-Ts
directly within the patients, potentially overcoming
current logistical challenges. Looking forward, the
field must address critical challenges such as further
optimization of editing precision, improved
scalability, standardization of automated
manufacturing processes, and rigorous regulatory
frameworks to ensure product consistency and safety.
Integrating automated, non-viral closed-system
manufacturing and comprehensive quality control
procedures will likely enable broader and safer
clinical applications of CAR-Tct, ultimately
facilitating their accessibility and affordability as
UCAR-T therapeutics.

Expanding the application of CAR to include cell
types beyond T cells introduces a novel dimension of
therapeutic versatility. CAR-NK cells, derivable from
cord blood or induced pluripotent stem cells (iPSCs),
emerge as promising candidates for allogeneic,
off-the-shelf products [177]. In contrast with T-cell
counterparts, CD19-targeted CAR-NK cells have
shown potent tumor-lytic effects in patients with
B-cell lymphoid tumors, without inducing CRS,
neurotoxicity, or GVHD [178]. CRISPR-enabled
reprogramming is yielding CAR-NK products with
materially improved persistence and function in solid
tumors. Genome-scale and targeted loss-of-function
studies converge on cell-intrinsic inhibitory nodes
whose disruption restores effector potency. For
example, CREM has emerged as a transcriptional
checkpoint induced by CAR and IL-15 signaling in
NK cells. Knockout of CREM increases cytokine
production and cytotoxicity and improves in vivo
tumor control in preclinical models [179]. In
complementary, unbiased screens, MED12, CCNC,
and ARIH2 were identified as actionable regulators
whose deletion enhances cytotoxicity, cytokine
production, and metabolic fitness of primary human
NK cells and CAR-NK constructs across hostile TME
conditions [180]. Beyond reversing dysfunction,
metabolic reprogramming is critical for durability in
nutrient-poor and hypoxic niches. Engineering
CAR-NK cells to secrete the de novo IL-2/IL-15
mimetic Neo-2/15 activates IL-2Rpy to STAT5 and
Akt and engages c-Myc and NRF1 programs, which
raises mitochondrial output and sustains antitumor
activity in solid-tumor models [181]. Together, these
strategies show how precise genetic editing can

overcome intrinsic limitations of NK cells and
advance potent, off-the-shelf therapies for solid
cancers.

Moreover, pioneering CAR-Tct using
unconventional T cells, such as y0T cells, iNKT cells,
Treg cells, and even macrophages, have entered
preliminary trials with encouraging results [182-184].
For example, distinct from traditional T cells
perceiving peptide antigens dependent on MHC
molecules, iNKT cells recognize lipid-based antigens
presented by the p2M-associated MHC I-like
molecule CD1d, which signifies that the function of
NKT cells is restricted by CD-1d rather than classical
TCR-MHC interaction, thus reducing risk for GVHD
[185, 186]. In addition, iNKT cells traffic across tissues
and impede the immune-repressive activity of TAMs
and MDSCs, which are compromised to create
tumor-friendly environment in the TME ecosystem.
Notably, early clinical trials of CAR-NKT cells
targeting GD2 have shown promising anti-tumor
activity without GVHD [187, 188].

7. Perspectives

The next mainstream wave of gene-edited
CAR-T will be defined by three converging
trajectories. First, clinical development is pivoting
from bespoke, ex-vivo manufacturing to in-vivo “cell
programming,” which has achieved durable B-cell
depletion in non-human primates without
lymphodepletion and is now in first-in-human
evaluation using targeted lipid nanoparticles to
transiently install CARs in circulating T cells—an
approach that promises repeat-dosing, dose titration,
and step-change scalability [189, 190]. Second,
universal allogeneic backbones are maturing from
concept to practice: multiplex hypoimmune editing
(e.g., TRAC/B2M/CIITA disruption with CD47 or
HLA-E stealth) is beginning to demonstrate evasion of
host immunity in patients, supporting UCAR-T
products with  improved persistence in
immunocompetent hosts [191]. In solid tumors,
specificity will increasingly depend on logic-gated
recognition, exemplified by synNotch-primed GBM
cells (E-SYNC) now in the clinic and Tmod™ circuits
(e.g., A2B530) that require tumor antigen and HLA
loss-of-heterozygosity [192]; early-phase readouts,

together with intraventricular CARv3-TEAM-E
producing  dramatic—but initially  transient—
regressions in recurrent GBM, argue that

multi-antigen logic plus regional delivery will become
the default template for high-risk sites [193]. Third,
indication  expansion into autoimmunity is
accelerating and likely to normalize short-course,
drug-free remissions: early CD19-CAR-T programs
(e.g., CABA-201) show encouraging activity, while
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allogeneic hypoimmune CAR-T is advancing in
autoimmune cohorts and has already induced
remission in refractory SLE; iPSC-derived products
are entering the same space and may decouple supply
from donor variability. These pushes will proceed
under tighter safety governance—the FDA’s
classwide boxed warning on secondary T-cell
malignancies underscores the need for lifelong
surveillance and will accelerate adoption of low-break
editors (base/prime) and layered control switches in
next-gen  designs.  Finally,  industrialization
(end-to-end automation, closed systems, and
distributed “smart factories”) is moving from pilots to
multi-year capacity agreements and real-world
manufacturing, positioning the field to reduce cost,
cycle time, and batch variability at scale.
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