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Abstract

Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to sustain growth, evade immune
surveillance, and resist therapy. Urological tumors, including prostate, bladder, and renal cancers, exhibit
distinct metabolic phenotypes driven by their unique tumor microenvironments and oncogenic pathways.
This review explores the emerging landscape of tumor metabolism in urological cancers, highlighting key
metabolic pathways such as glycolysis, lipid metabolism, amino acid metabolism, and redox balance. We
discuss how these pathways are intricately linked to tumor progression, therapeutic resistance, and
immune evasion. Furthermore, we examine novel therapeutic strategies targeting metabolic
vulnerabilities, including metabolic enzyme inhibitors, synthetic lethality approaches, and metabolic
modulation to enhance immunotherapy. By integrating advances in multi-omics technologies and
preclinical models, we propose a framework for translating metabolic research into clinical applications.
This review aims to provide a comprehensive overview of metabolic reprogramming in urological tumors
and to identify potential metabolic targets for innovative therapies.
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1. Introduction

Urological tumors, encompassing bladder  metabolic hallmarks such as lipid accumulation and

cancer, renal cell carcinoma (RCC), and prostate
cancer, are significant contributors to global cancer
morbidity and mortality. Bladder cancer, which is
associated with smoking and environmental
exposure, is the 10th most common malignancy
worldwide [1-3], with distinct molecular subtypes
ranging from non-muscle-invasive to muscle-invasive
disease [4]. Despite advancements in surgical and
systemic therapies, the five-year survival rates for
advanced bladder cancer remain dismal. RCC,
accounting for 80-85% of kidney cancers, is
characterized by marked metabolic heterogeneity [5],
with clear cell RCC (ccRCC) demonstrating unique

disruptions in oxidative phosphorylation [6, 7].
Prostate cancer, the second leading cause of
cancer-related deaths among men, displays
remarkable clinical and molecular diversity [8-12],
from hormone-sensitive localized disease to
therapy-resistant, aggressive variants like
neuroendocrine prostate cancer (NEPC) [13]. While
current therapies, including immune checkpoint
inhibitors (ICIs) and androgen deprivation therapy,
have improved outcomes, advanced disease stages
continue to exhibit therapeutic resistance and poor
prognosis [14-16].

Under specific physiological or pathological
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conditions, cells adjust their metabolism to meet their
own needs, such as glycometabolism, lipid
metabolism, and amino acid metabolism. But tumors
exhibit  significant = changes in  metabolic
characteristics, which is called tumor metabolic
reprogramming. In order to fight against different
environments, tumor cells use the body's anabolism,
such as the Warburg effect, lipid metabolism, and
glutamine breakdown, to promote their own
unrestricted growth. Such metabolic reprogramming
not only supports tumor growth and metastasis but
also provides the possibility of new therapeutic
targets [17]. Research on metabolic reprogramming in
urologic tumors has gradually revealed some specific
metabolic pathways and molecular mechanisms. For
example, bladder cancer cells often exhibit significant
enhancement of glycolysis [18-20], whereas renal
cancer cells may maintain their growth and survival
by altering lipid metabolism [21, 22]. In addition, the
metabolic profile of prostate cancer has also shown
dependence on androgen-dependent metabolic
pathways [23-25], and these findings suggest new
targets and strategies for the treatment of urologic
tumors.

This review aims to provide a comprehensive
synthesis of recent advances in the field of metabolic
reprogramming in urological tumors, focusing on
bladder cancer, kidney cancer, and prostate cancer.
We will explore the metabolic characteristics of these
tumors, elucidate the mechanisms underlying
metabolic reprogramming, and evaluate the clinical
implications of these findings. By integrating
multi-omics data—including genomics,
transcriptomics, and metabolomics—this review
seeks to uncover novel metabolic pathways and their
regulatory networks. Additionally, we will discuss
the therapeutic potential of targeting tumor
metabolism, highlighting emerging strategies such as
metabolic enzyme inhibitors, synthetic lethality
approaches, and metabolic modulation to enhance
immunotherapy. This review adopts a holistic
perspective that encompasses both intrinsic tumor
metabolic reprogramming and its interplay with the
tumor microenvironment (TME), offering a roadmap
for future research and clinical applications.
Ultimately, this work aims to provide actionable
insights into how metabolic vulnerabilities can be
exploited to develop innovative therapies for
urological malignancies.

2. Metabolic features of urologic tumors

2.1 Overview of tumor metabolism

Warburg effect and tumor metabolism

Metabolic reprogramming is a defining feature

of cancer, enabling tumor cells to sustain their growth
and proliferation by reconfiguring energy metabolism
[26]. One of the most well-known phenomena is the
Warburg effect, characterized by a preference for
aerobic glycolysis over mitochondrial oxidative
phosphorylation, even under normoxic conditions
[27]. While glycolysis is less efficient in ATP
production, it supports anabolic processes by
generating intermediates essential for synthesizing
nucleotides, lipids, and amino acids. This adaptation
allows tumor cells to meet the biosynthetic and
energetic demands of rapid proliferation [28]. In
urological tumors, such as bladder cancer, renal cell
carcinoma (RCC), and prostate cancer, the Warburg
effect plays a critical role in tumor progression. For
example, in RCC, the hypoxia-inducible factor 1-alpha
(HIF-1a) pathway drives the upregulation of
glycolytic enzymes, including lactate dehydrogenase
A (LDHA) and pyruvate kinase M2 (PKM2),
enhancing glycolytic flux [29]. Moreover, prostate
cancer cells often exhibit AR-dependent modulation
of glucose metabolism, with the androgen receptor
(AR) promoting glucose transporter 1 (GLUT1)
expression to increase glucose uptake. Additionally,
the Warburg effect leads to the accumulation of
lactate in the TME, creating an acidic and hypoxic
milieu that promotes immune evasion and
angiogenesis. High levels of lactate also disrupt
normal metabolic signaling, reprogramming immune
cells such as T cells and macrophages to adopt
immunosuppressive phenotypes. Understanding the
regulatory nodes of the Warburg effect, such as
HIF-la and LDHA, may provide new avenues for
therapeutic interventions aimed at halting tumor
progression and restoring immune function [17,
30-32].

Regulation of amino acid, lipid, and glucose
metabolism

Amino acids play diverse roles in tumor
metabolism, acting as substrates for protein synthesis,
signaling mediators, and regulators of redox
homeostasis. Among these factors, glutamine
metabolism is a cornerstone of tumor growth.
Glutamine serves as a nitrogen and carbon donor,
fuelling the tricarboxylic acid cycle (TCA cycle),
nucleotide biosynthesis, and antioxidant defense [33].
Hypoxia and oncogenic signaling, such as c-Myc
activation, upregulate glutaminase (GLS) to convert
glutamine into glutamate, which feeds into the TCA
cycle as a-ketoglutarate (a-KG). Glutamine-derived
intermediates also support glucose-independent TCA
activity, a critical adaptation in nutrient-limited
environments [34-37]. Other amino acids, such as
serine and glycine, contribute to one-carbon
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metabolism and nucleotide synthesis, whereas
arginine and polyamines promote tumor proliferation
by  modulating  chromatin  structure  and
transcriptional activity. Notably, polyamines also
enhance nuclear factor kappa B (NF-xB) signaling,
further driving tumor cell proliferation and invasion
[33, 38, 39]. These pathways represent promising
therapeutic targets, particularly in tumors like RCC,
where amino acid metabolism plays a central role in
maintaining cellular homeostasis.

Reprogramming of lipid metabolism is essential
for tumor progression. Tumor cells upregulate de
novo fatty acid synthesis and enhance lipid uptake to
meet the demands of membrane biosynthesis, energy
production, and signaling. Lipids such as
diacylglycerol (DAG) and phosphatidylinositol-3,4,5-
triphosphate (PIP3) serve as second messengers,
activating pathways involved in cell proliferation,
angiogenesis, and metastasis. In prostate cancer,
lipids also modulate AR signaling, reinforcing the
metabolic dependency of these tumors on
androgen-regulated  lipid synthesis [40, 41].
Alterations in lipid saturation levels protect cancer
cells from reactive oxygen species (ROS)-induced
damage. By increasing the ratio of saturated and
monounsaturated fatty acids in membrane lipids,
tumor cells enhance their resistance to oxidative
stress, thereby supporting survival and therapy
resistance [42]. Targeting lipid metabolism, through
inhibitors of fatty acid synthase (FASN) or lipid
transporters, is an emerging strategy in the treatment
of aggressive urological tumors.

Glucose is the primary energy source in
mammalian cells, and tumor cells exploit its
metabolism to fuel growth and survival. In addition
to the Warburg effect, enhanced glucose uptake via
GLUT transporters and increased glycolytic enzyme
activity are hallmarks of tumorigenesis [43]. Growth
factor signaling, such as the RTK/PI3K/AKT/mTOR
pathway, further amplifies glucose metabolism in
tumor cells. Notably, the genomic amplification of
receptor tyrosine kinases (e.g., EGFR, ERBB2)
enhances the sensitivity of tumor cells to growth
factors, sustaining their proliferative capacity [44].
Tumor cells also influence stromal cells within the
TME to secrete growth factors, creating a paracrine
loop that supports tumor growth. For instance,
bladder cancer cells can stimulate fibroblasts to
secrete insulin-like growth factor (IGF), which
activates downstream glucose metabolic pathways in
both tumor and stromal cells [45]. This reciprocal
interaction underscores the complexity of metabolic
reprogramming and its dependence on the TME.

Metabolic effects of TME

TME is mainly composed of tumor cells, immune
cells, extracellular matrix (ECM), related metabolites,
etc. These components of the TME interact with each
other to jointly affect tumor growth, invasion,
metastasis, and response to treatment. To meet the
needs of rapid proliferation and survival, tumors
adjust metabolic pathways to compete with other cells
for a large number of nutrients, such as glucose and
amino acids. The high consumption of glucose leads
to the depletion of glucose in the TME, which affects
the metabolism and function of immune cells.
Moreover, the Warburg effect of tumors can lead to
the accumulation of lactic acid in the TME and
eventually form a  hypoxic and  acidic
microenvironment, which also has a corresponding
impact on metabolism. For glucose metabolism, in
addition to the Warburg effect, immune cells in TME,
such as T cells and macrophages, also adjust their
glucose metabolism pathways to adapt to
environmental changes [46, 47]. Tumor cells may meet
their energy requirements by increasing the uptake
and oxidation of fatty acids. Meanwhile, alterations in
lipid metabolism can also affect the function of
immune cells; for example, lipid accumulation in
dendritic cells may reduce their antigen presentation
capacity [48]. Amino acid metabolism has a profound
impact on tumor development and progression.
Amino acids are not only the cornerstone of protein
synthesis, but also involved in the regulation of tumor
cell metabolism, signal transduction, REDOX balance,
and epigenetic modifications. For example, glutamine
affects tumor-associated macrophages (TAMs)
polarization and T cell differentiation, thereby
affecting their related immune effect [49], and
arginine metabolism can affect the function of CD8+ T
cells [50]. In general, TME has an impact on glucose,
amino acid, and lipid metabolism, which not only
promotes metabolic reprogramming but also
downregulates the function of immune cells in TME
and promotes tumor immune escape.

2.2 Metabolic reprogramming of bladder
cancer

Abnormal glucose metabolism in bladder cancer

Bladder cancer, predominantly urothelial
bladder cancer (UBC), is a highly vascularized
malignancy characterized by metabolic

reprogramming, which plays a pivotal role in its
progression [51, 52]. The rapid proliferation of tumor
cells leads to the development of a disorganized
vascular network, creating nutrient-deprived and
hypoxic tumor microenvironments. Hypoxia is a
critical driver of metabolic reprogramming in bladder
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cancer, particularly in glucose metabolism [53].
Tumor endothelial cells (ECs), under hypoxic
conditions, exhibit enhanced glycolytic flux,
evidenced by the upregulation of glycolytic enzymes
such as hexokinase 2 (HK2), PKM2, and LDHA. These
changes are essential for angiogenesis and tumor
growth [33, 54, 55]. Metabolomic studies have
revealed that UDP-GIcNAc, the terminal product of
the hexosamine biosynthetic pathway (HBP), is
significantly ~elevated in ECs derived from
muscle-invasive bladder cancer (MIBC) tissues [56,
57]. These findings suggest that the key HBP enzyme,
GFAT1, may  drive  glucose  metabolism
reprogramming in bladder cancer. Moreover, studies
have shown that the overexpression of glucose
metabolism-related proteins, such as GLUT1 and
HK2, correlates with increased aggressiveness and
poor prognosis in bladder cancer. Experimental
inhibition of HK2 via 2-deoxy-D-glucose (2-DG) has
demonstrated promising antitumor effects in vitro and
in vivo, indicating the potential therapeutic value of
targeting glucose metabolism in bladder cancer [58,
59]. Studies have evaluated the association between
GLUT1 and the 10-year overall survival (OS) of
patients. Compared with tumors with low expression,
patients with tumors overexpressing GLUT1 had a
lower 10-year OS (97 months vs. 163 months, log rank
P =0.004) [60].

Resistance to chemotherapeutic agents such as
cisplatin and gemcitabine is another major challenge
in bladder cancer management [61]. Hypoxia in the
TME promotes metabolic adaptations that contribute
to chemoresistance, including increased glycolytic
flux through the pentose phosphate pathway (PPP)
and increased synthesis of  deoxycytidine
triphosphate  (dCTP), which competes with
gemcitabine for DNA incorporation. Furthermore,
glucose-derived acetate and acetyl-CoA synthetase 2
(ACSS2) have been implicated in cisplatin resistance.
Elevated glucose consumption in cisplatin-resistant
cells leads to higher production of glucose-derived
acetate, fueling fatty acid synthesis and promoting
tumor survival. Targeting ACSS2 and other metabolic
vulnerabilities represents a promising strategy for
overcoming chemoresistance in bladder cancer
[62-66]. Metabolomic analysis has shown that
metabolic reprogramming in gemcitabine-resistant
urothelial cancer cells increases aerobic glycolysis via
the pentose phosphate pathway, promotes the
synthesis of dCTP, and competitively inhibits
gemcitabine [67]. Glucose-derived acetate and ACSS2
are also factors involved in cisplatin resistance in
bladder cancer. In cisplatin-resistant bladder cancer
cells (T24R cell line), glucose consumption is
increased, leading to higher production of

glucose-derived acetate and fatty acids. ACSS2
provides  acetyl-CoA to tumor «cells via
glucose-derived endogenous acetate in these cells and
is a potential target for cisplatin resistance [68].
Glucose metabolic reprogramming in bladder cancer
plays an important role in tumor growth,
angiogenesis, and chemoresistance, especially in a
hypoxic environment. Targeting glucose metabolism
and metabolic vulnerabilities, such as gfatl and acss2,
may play a potential role in delaying bladder cancer
tumor progression and improving chemotherapy
resistance.

Lipid metabolism in bladder cancer and its clinical
implications

Reprogramming of lipid metabolism is one of
the most prominent metabolic changes in bladder
cancer. The changes of lipid metabolism include the
characteristic changes of key genes and metabolic
components, such as lipid wuptake, synthesis,
transport, and catabolism, to adapt to the growth
needs of tumor cells. A mixed cohort study of 800,000
people suggested positive associations between blood
pressure, cholesterol, triglycerides, and risk for
NMIBC and bladder cancer mortality in men and
between triglycerides and bladder cancer mortality in
women [69]. Metabolomic analysis further indicates
that bladder cancer tissue exhibits elevated levels of
phospholipids and fatty acids while demonstrating
lower triglycerides compared to normal bladder
tissue  [70]. Blocking or inhibiting lipid
metabolism-related proteins, such as peroxisome
proliferator-activated receptors (PPARSs),
Sterol-regulatory element binding proteins (SREBPs),
and FASN, can inhibit the proliferation and metastasis
of bladder cancer cells [71, 72]. In addition, HSDL2,
FADS1, FATP4, ACSL1, and other proteins, which are
closely related to the proliferation and apoptosis of
bladder cancer cells, are highly expressed in bladder
cancer tissues [73, 74].

Aberrant activation of SREBP is the main cause
of abnormal lipid metabolism in bladder cancer.
SREBP1 is mainly involved in fatty acid synthesis,
whereas SREBP2 mainly regulates cholesterol
biosynthesis [75]. Activating mutations in the RAS
gene are associated with lipid metabolism
remodeling, which can activate mammalian target of
rapamycin C1 (mTORC1), which in turn induces
mature SREBP to enter the nucleus and promote the
transcription of genes related to lipid metabolism. To
meet the needs of tumor cell growth and metabolism
[76, 77]. SREBP plays important roles in lipid
metabolism, tumor growth, tumor stemness
maintenance, and chemotherapy resistance in bladder
cancer, which may be a potential target for the
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treatment of bladder cancer.

High cholesterol not only increases the
prevalence of cardiovascular diseases, but is also
closely related to bladder cancer. Excess cholesterol in
serum can increase the tumor dryness of transplanted
bladder cancer mice and spontaneous bladder cancer,
thus promoting the development of bladder cancer.
This is closely related to Oxidized low-density
lipoprotein (ox-LDL) in serum [78]. For patients with
hypercholesterolemic bladder cancer, serum ox-LDL
can bind to CD36 and activate the JAK2-pSTAT3
pathway, thereby promoting the cancer stemness of
bladder cancer, increasing cancer cell proliferation,
and inducing epithelial-mesenchymal transition in
vitro. In addition to cancer cells, ox-LDL can interact
with other cells through the CD36 receptor, interact
with macrophages to secrete proinflammatory
cytokines and chemokines, and interact with
endothelial cells to promote angiogenesis [79, 80].
Therefore, the level of ox-LDL in serum can predict
the prognosis of patients to some extent. Targeting
cholesterol metabolism is one of the feasible methods
in treatment strategies. = 7-dehydrocholesterol
reductase (DHCR?) is an important enzyme involved
in cholesterol synthesis. It can promote the
cAMP/PKA/AKT  pathway by reducing the
concentration of 7-dehydrocholesterol and promoting
the transcription of G protein-coupled receptor, which
plays an important role in bladder cancer invasion
and metastasis. Inhibition of DHCR?Y is expected to be
a feasible therapeutic strategy to inhibit bladder
cancer invasion and metastasis [81].

Apart from glucose metabolism, fatty acid

-oxidation also provides energy to tumor cells.
Therefore, the key enzymes of lipid metabolism are
expected to be potential targets for the treatment or
adjuvant therapy of bladder cancer. Studies have
shown that FASN is one of the core genes of fatty acid
metabolism in bladder cancer and is related to the
efficacy of immune checkpoint therapy in bladder
cancer. Patients with low expression of FASN have a
better response to ICI treatment. In turn, it is
suggested that FASN is also a potential indicator and
regulator of ICI therapy [82]. Through integrated
bioinformatics analysis, researchers can use genes that
are key to lipid metabolism to construct diagnostic
and therapeutic models of bladder cancer and
develop novel gene signatures related to lipid
metabolism that can predict the prognosis of patients
with bladder cancer and may guide treatment
selection [83, 84].

In conclusion, lipid and cholesterol metabolism
reprogramming plays a crucial role in the occurrence
and development of bladder cancer, providing a new
perspective and potential therapeutic target for the

diagnosis, treatment, and prognosis evaluation of
bladder cancer.

Metabolic markers associated with bladder cancer
progression

Urine cytology is one of the important methods
for the diagnosis and postoperative follow-up of
bladder cancer. There may be changes in specific
metabolites in the urine of patients with bladder
cancer. At present, urine fluorescence in situ
hybridization (FISH), nuclear matrix protein 22
(NMP22), bladder tumor antigen (BTA), and other
detection methods are available. Urinary NMP22 and
BTA can be significantly increased in patients with
bladder cancer, which is of reference value for the
diagnosis of bladder cancer [85]. Techniques for
detecting bladder cancer based on urine DNA or
RNA, such as the detection of mutations and
methylation of telomerase reverse transcriptase
(TERT), Fibroblast growth factor receptor 3 (FGFR3),
Vimentin (VIM), and One Cut Homeobox 2
(ONECUT2) genes, have become the focus of
research. These gene mutations and methylation
signatures have high sensitivity and specificity for the
diagnosis of bladder cancer [86-89]. Detection of the
mRNA expression of IGFBP5, HOXA13, MDK, CDC2,
CXCR2, etc., is also helpful for the early diagnosis of
bladder cancer [90, 91]. According to the results of
weighted gene co-expression network analysis and
protein-protein interaction network analysis, some
researchers have identified 6 potential biomarkers
(COL3A1, FN1, COL5A1, FBN1, COL6A1l, and
THBS2) that may be related to the progression and
poor prognosis of bladder cancer, but further studies
are lacking.

Urine examination provides a variety of
detection methods for the diagnosis and
postoperative follow-up of bladder cancer, including
traditional urine cytology and the detection of
emerging molecular markers. These methods help
improve the diagnostic accuracy and prognostic
evaluation of early bladder cancer.

2.3 Metabolic reprogramming of renal cell
carcinoma

Metabolic features of clear-cell renal cell carcinoma:
lipid accumulation and oxidative phosphorylation

ccRCC is the most common pathological type of
renal cancer. It is typically characterized by the
deposition of cytoplasmic lipids, which are necessary
to maintain cell survival, but excess lipids can also
promote renal tumor invasion [92]. In the fatty acid
synthesis pathway, enzymes such as FASN, ATP
citrate lyase (ACLY), and acetyl-CoA carboxylase
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(ACC) are up-regulated in ccRCC cancer tissues [93].
Interestingly, increased expression of ACLY is
associated with a good prognosis for patients.
However, in vitro cell experiments have shown that
tumor cell proliferation is reduced when ACLY is
inhibited, and the association between this needs to be
further explored [94]. High expression of ACC and
FASN is associated with poor prognosis of patients
(Hazard ratio (HR) 5.563, 95% confidence interval (CI)
= 3431 - 9.021, P < 0.001) [95]. A new generation
FASN inhibitor, TVB-2640, has shown promising
effects in phase I trials in patients with advanced
cancer (including prostate cancer, rectal cancer,
gastric cancer, etc.

), suggesting the feasibility of FASN as a
therapeutic target [96].

CD36, a transmembrane protein that transfers
extracellular fatty acids to cytoplasmic fatty acid
binding proteins, is regulated by the HIF pathway,
which could explain its upregulation in renal cancer
[97]. In addition to renal cell carcinoma, CD36
expression is also upregulated in many malignancies,
including prostate cancer, and in patients undergoing
nephrectomy, progression-free survival (PFS) is
significantly reduced in patients with high CD36
expression, which is dependent on exogenous intake
of cholesterol. Among the receptors related to
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cholesterol intake, the transporter scavenger
receptor-B1 (SCARB1) was significantly upregulated.
These results indicate that ccRCC tumors mainly rely
on SCARBI1 for cholesterol intake. However, studies
have shown that cholesterol promotes tumor cell
proliferation mainly through the PI3K/AKT signaling
pathway, while SCARB1-mediated cholesterol uptake
also protects tumor cells from ROS-mediated
oxidative stress [98, 99].

In ccRCC, the Warburg effect is also present,
where the oxidative phosphorylation process is
usually inhibited and the glycolytic pathway is
upregulated. HIF inhibits the TCA cycle through
transcriptional activation of pyruvate dehydrogenase
kinase 1(PDK1). Most enzymes that catalyze the TCA
cycle in renal cancer cells are down-regulated, and
mitochondrial oxidative phosphorylation activity,
which is closely related to TCA, is also reduced. Other
enzymes whose pathways supplement metabolic flow
to the TCA cycle are also commonly downregulated
[100, 101].

In ccRCC, mitochonderial electron transport chain
(ETC) activity is decreased, but TCA cycle activity is
increased in metastatic ccRCC. Stimulation of
mitochondrial respiration or activation of the NADH
cycle promotes tumor metastasis, while inhibition of
electron transport chain complex I activity inhibits
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Figure 1. Metabolic Reprogramming in Bladder Cancer. Glycolysis converts glucose into lactic acid. Pyruvate enters the TCA cycle to produce energy in the mitochondria to
support cell survival and to produce ROS. Amino acid metabolism, which provides relevant intermediates for cell function, regulates lipid metabolism via the mTOR signaling

pathway.
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metastasis. In addition, higher expression of genes
involved in oxidative phosphorylation is associated
with the aggressiveness of ccRCC, and higher mtDNA
content is also associated with poorer survival
expectations [102].

The oxidative phosphorylation process in ccRCC
is also associated with oxidative stress. For example,
DPP9 induces ccRCC resistance to targeted therapy by
stabilizing NRF2 protein levels, activating oxidative
stress signaling, and inhibiting ferroptosis. NRF2 has
a wide range of antioxidant effects and is a key gene
in the regulation of oxidative stress. In ccRCC, NRF2
activation is clearly associated with tumor
progression and drug resistance. These research
advances reveal the critical role of lipid accumulation
and oxidative phosphorylation in ccRCC in tumor
metabolic reprogramming, and suggest a dual role of
oxidative phosphorylation in the progression of renal
cell carcinoma [103].

Lipid accumulation and oxidative
phosphorylation play a central role in the metabolic
reprogramming of ccrcc. Among them, the role of
OXPHOS is dual (inhibited in primary tumors and
promoted in metastasis) and closely associated with
other processes (such as oxidative stress and drug
resistance), revealing its complexity as a therapeutic
target.

Lactate metabolism and microenvironmental
adaptation in renal cell carcinoma

The metabolic reprogramming of RCC involves
significant alterations in lactate metabolism, which
plays a critical role in shaping TME and driving
disease progression. Cancer-associated fibroblasts
(CAFs) are key players in this process and actively
participate in glycolysis and lactate secretion. This
phenomenon, driven by the Warburg effect,
contributes to hypoxia and decreased pH in the TME,
fostering an environment conducive to tumor growth
and immune evasion.

CAFs exhibit dual roles in the TME. On the one
hand, they secrete growth factors and chemokines,
attracting immune cells to the tumor site and
producing anti-tumor effects. On the other hand,
CAF-derived exosomes can transfer oncogenic
molecules into renal cancer cells, promoting their
proliferation, invasion, and metastatic potential.

The accumulation of lactate in the TME creates
an immunosuppressive milieu, facilitating tumor
progression through mechanisms such as polarization
of TAMs toward the M2 phenotype, impaired
dendritic cell differentiation, and suppression of
cytotoxic T cell functions [104, 105]. Recent studies
highlight  that lactate  induces  epigenetic
modifications, such as histone lactylation in M1

macrophages, altering their phenotype and reducing
their anti-tumor activity. Conversely, glutamine
synthetase (GS) activity in M2 macrophages mediates
their ~pro-angiogenic, immunosuppressive, and
pro-metastatic functions. Targeting GS has been
shown to reprogram M2 macrophages back into M1
macrophages, thereby enhancing T cell-mediated
immune responses [106, 107]. Thus, lactate
metabolism plays a central role in RCC progression,
not only by fuelling tumor cell growth but also by
modulating immune cell function, enabling immune
escape, and contributing to therapy resistance.

Role of HIF pathway in renal cell carcinoma
metabolism

Metabolic reprogramming in RCC is heavily
influenced by the inactivation of the VHL (von
Hippel-Lindau) gene and the activation of the
Ras-PI3K-AKT-mTOR pathway. Loss of VHL function
leads to the stabilization and activation of HIFs, which
are key transcription factors driving
hypoxia-associated metabolic adaptations [108]. RCC
is characterized by high HIF activity, particularly
involving HIF-la and HIF-2a, which orchestrate
distinct but complementary roles in tumor
progression.

HIF-1a is a critical driver of the Warburg effect,
promoting  glycolysis through upregulation of
glycolytic enzymes such as LDHA, GLUTI1, and
PDK1. These metabolic shifts increase lactate
production, contributing to TME acidification and
angiogenesis through the induction of vascular
endothelial growth factor (VEGEF) and
platelet-derived growth factor (PDGF) [109].
Additionally, HIF-la-mediated lactate accumulation
enhances ferroptosis resistance in RCC by modulating
the pH-dependent HIF-1a/LDH axis, enabling tumor
cells to survive oxidative stress [110].

HIF-2a, on the other hand, plays a prominent
role in lipid metabolism and cancer stem cell (CSC)
maintenance. Studies indicate that the HIF pathway is
linked to lipid deposition in RCC, with PHFS, a
regulator of lipid storage, being activated under
hypoxia in a VHL-dependent manner [111].
Furthermore, HIF-2a drives the expression of genes
associated with invasion and stemness, such as OCT4,
PAI-1, and MMPY9, through the activation of
hypoxia-associated factors (HAFs) that shift hypoxia
responses from HIF-1a to HIF-2a dependency [110].
The role of HIFs in CSC maintenance, while
well-documented in other cancers, remains
underexplored in RCC. Insights from glioblastoma
suggest that HIF-2a, rather than HIF-1a, is more
critical for CSC proliferation and self-renewal,
highlighting the potential for similar mechanisms in
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RCC. Upregulated HIF-2a in CSCs has been
associated with the promotion of tumor-initiating
capacity, immune evasion, and therapeutic resistance
[112, 113]. Given the aggressive nature of CSC-driven
RCC, further investigation into the interplay between
HIFs and CSCs is warranted.

2.4 Metabolic reprogramming of prostate
cancer

Abnormal lipid metabolism and androgen-receptor
signaling in prostate cancer

Abnormal lipid metabolism is one of the
significant characteristics of PCa, which is closely
related to the development of the disease and
treatment resistance. Prostate tumors are highly
dependent on lipids for energy, growth, and survival.
The androgen receptor is a major factor in the growth
and progression of prostate cancer. It is a
ligand-dependent nuclear transcription factor that
regulates the expression of target genes by binding to
androgens. Androgen deprivation therapy (ADT) is
the cornerstone of the treatment of hormone-sensitive
prostate cancer, but most patients will eventually
develop castration-resistant prostate cancer (CRPC),
where AR signaling remains active even in the
presence of very low androgen levels.

AR directly regulates the expression of genes
encoding proteins involved in lipid synthesis, uptake,
and storage. AR can also indirectly affect key
regulators of lipid metabolism by increasing the
expression of sterol regulatory element binding
proteins [114, 115]. For example, it has been shown
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that AR can directly regulate acyl-CoA synthetase
medium-chain family members 1 and 3 (ACSM1 and
ACSM3), both of which are up-regulated in tumor
tissues. AR promotes tumor proliferation and protects
tumor cell survival both in vitro and in vivo. The
metabolic dysregulation caused by ACSM1/3
deficiency promotes ferroptosis in tumor cells [116].

SREBP is a major transcriptional regulator of
lipogenesis; AR can control SREBP function by
regulating SREBP cleavage—activating protein
(SCAP) expression, and activation of SREBP promotes
the transcription of lipogenic enzymes [117, 118].
These findings explain the upregulated expression of
genes related to lipid metabolism in PCa, including
FASN, LDLR, ACC, and phosphoenolpyruvate kinase 1
(PCK1).

Fatty acid binding protein 5 (FABP5) is a key
transporter that delivers fatty acids to nuclear
receptors to enhance PCa metastasis [119]. The
signaling lipids produced by FABP5 and
monoacylglycerolase (MAGL) enter the nucleus and
bind to receptors such as PPARy to regulate VEGF
factor synthesis and promote tumor metastasis [120].
In addition, AR signaling can interact with the
PTEN/PIBK/AKT/mTOR pathway. In addition, the
PIBK/AKT/mTOR pathway plays an important role in
cell cycle regulation, and both of them jointly promote
tumor proliferation. Dual pathway inhibition can
significantly inhibit tumor growth [121]. AR signaling
can also interact with related transcription factors in
the WNT signaling pathway to promote the activation
of the Wnt/p-catenin signaling pathway [122].
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Figure 2. Metabolic reprogramming of renal cell carcinoma. The hypoxic tumor microenvironment and mTOR signaling upregulate the HIF pathway, promoting lipid deposition
and tumor progression through the PHF8-GLUL axis. 2. Promote tumor angiogenesis and metastasis by promoting the expression of VEGFA, PDGFB, and other proteins. 3.
Generate lactic acid through the Warburg effect and inhibit pH-dependent iron death through lactate dehydrogenase (LDH).
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AR reprograms lipid metabolism through a
multi-level complex network (direct, indirect, and
pathway intersection) to meet the bioenergetic and
biosynthetic needs of prostate cancer cells, which not
only drives tumor progression and metastasis, but
also leads to the generation of therapeutic resistance
(such as castration resistance). This makes targeting
lipid metabolism a potential therapeutic strategy.

Glycometabolism in prostate cancer and its
relationship with disease grade

PCa, like other malignancies, exhibits a
metabolic shift toward aerobic glycolysis. Advanced
PCa cells exhibit high glycolytic activity, and key
enzymes of glycolysis have been confirmed to be
associated with cancer. Among the GLUT subtypes,
GLUT1 is closely related to PCa. It is frequently
overexpressed in PCa and is associated with a poor
prognosis of PCa[123].

High expression of key enzymes in glycolysis,
hexokinase (HK) and phosphofructokinase (PFK), is
also  responsible = for  tumor = progression.
ADP-dependent glucokinase (ADPGK) is
overexpressed in prostate adenocarcinoma and has
been shown to promote PCa cell proliferation and
migration in vitro and in vivo, while predicting poor
prognosis of patients [124]. The end product of
glycolysis, lactate, and the acidic TME it creates play
critical roles in PCa metastasis. Accumulated lactate
enhances tumor cell motility and invasiveness while
suppressing immune surveillance, thus facilitating
disease progression [31, 125, 126].

The metabolic landscape of PCa is further linked
to tumor grade, as classified by the Gleason scoring
system. This scoring system assesses tumor
aggressiveness based on histological patterns.
Emerging evidence indicates that glucose metabolism
levels correlate with PCa grade and stage. For
instance, studies suggest that hyperglycemia has
distinct prognostic implications depending on tumor
grade: Low-grade PCa: Elevated HbAlc levels (a
marker of long-term blood glucose levels) appear to
be negatively associated with disease progression.
High-grade PCa: HbAlc is positively associated with
tumor aggressiveness and poor prognosis.

These findings highlight a complex relationship
between glucose metabolism, systemic
hyperglycemia, and disease severity. Hyperglycemia
may fuel glycolysis-dependent pathways in
aggressive PCa, exacerbating tumor progression,
while lower glucose availability may restrict growth
in indolent tumors [127].

Role of Oxidative Stress in Prostate Cancer
Progression

Oxidative stress arises from an imbalance
between the production of ROS and the cellular
antioxidant defense system. In prostate cancer, ADT
and interference with AR signaling, the cornerstone
treatments for advanced disease, profoundly alter
redox homeostasis. Under normal conditions,
androgens regulate the balance between pro-oxidants
and antioxidants, maintaining physiological redox
equilibrium in the prostate. However, following
castration, ROS production increases significantly,
disrupting this balance and enhancing oxidative stress
[128].

Excess ROS plays a critical role in prostate cancer
progression by acting as signaling molecules that
regulate key oncogenic pathways. Oxidative stress
activates transcription factors such as Twistl, YB-1,
NF-xB, and CREB, which drive AR signaling. This
activation leads to increased AR expression,
heightened AR sensitivity to low androgen levels, and
local production of androgens within TME. In
addition, oxidative stress can induce alternative
pathways of AR activation, further promoting
castration resistance and tumor progression [129-132].

In patients with prostate cancer, there are
changes in antioxidant defense capacity, such as
increased plasma concentrations of thiobarbituric
acid-reactive substances (TBARS), increased serum
protein carbonylation, decreased whole blood catalase
(CAT) activity, increased superoxide dismutase (SOD)
activity, and increased plasma and red blood cell thiol
levels. Serum vitamin C and vitamin E concentrations
are reduced [133]. HJURP enhances the antioxidant
capacity of oxidase-1 (PRDX1) through disulfide
bonds, leading to a novel mechanism of ferroptosis
resistance in prostate cancer cells. This study provides
potential new therapeutic targets for prostate cancer
[134].

In summary, oxidative stress, driven by
increased ROS production following androgen
deprivation, plays a central role in prostate cancer
progression by activating AR signaling pathways and
inducing treatment resistance. Prostate cancer cells
adapt by upregulating antioxidant mechanisms,
including enzymatic systems and non-enzymatic
antioxidants, to counterbalance ROS and evade
ferroptosis. The interplay between oxidative stress,
antioxidant defenses, and ferroptosis resistance not
only drives disease progression but also offers novel
opportunities for therapeutic intervention. Targeting
these pathways could lead to improved outcomes for
patients, particularly in advanced prostate cancer.
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Figure 3. Metabolic reprogramming of prostate cancer. Androgens produced through the hypothalamic pituitary gonadal axis act on AR. AR can directly regulate ACSM1/3 and
promote the entry of fatty acids into mitochondria for B-oxidation. Silencing ACSM1/3 can lead to ferroptosis of prostate cancer cells. AR signals can regulate SREBP expression
and promote lipid deposition. After ADT therapy, the Wnt/B - catenin pathway is reflexively upregulated, leading to continued tumor progression.

3. Molecular mechanisms of metabolic
reprogramming

3.1 Key metabolic enzymes and signaling
pathways

mTOR and PI3K/AKT pathways and metabolic
regulation

The mTOR signaling pathway is a central
regulator of cellular growth, proliferation, and
metabolism. It functions through two distinct protein
complexes: mMTORC1 and mTORC?2, each with unique
regulatory roles. mTORC1 primarily controls anabolic
processes, including protein synthesis, lipid synthesis,
and glycolysis, while mTORC2 regulates cell survival,
cytoskeletal organization, and lipid metabolism.

Dysregulation of the PI3K/AKT/mTOR axis is a
hallmark of cancer metabolic reprogramming,
contributing to uncontrolled cell growth and survival.
mTORC1 is activated by upstream signals such as
growth factors (e.g., insulin), amino acids (e.g.,
leucine), and energy status. Activation occurs through
the PI3K-AKT-TSC1/2-Rheb cascade, where AKT
phosphorylates TSC2 to relieve its inhibitory effects
on Rheb, enabling mTORC1 activation [135].

Once activated, mTORC1 promotes glycolysis by
inducing key transcription factors, including
hypoxia-inducible factor 1a (HIF1la) and Myc, both of
which upregulate glycolytic enzymes such as GLUT1,
HK2, and LDHA. These enzymes increase glucose
uptake and glycolytic flux, enabling cancer cells to
meet the biosynthetic demands of rapid proliferation.

Additionally, mTORC2 regulates glycolysis via
both  AKT-dependent and  AKT-independent
mechanisms. AKT activation promotes glucose
metabolism by phosphorylating downstream targets
such as AS160, which facilitates membrane
translocation of GLUTs, further increasing glucose
uptake. AKT also inhibits gluconeogenesis and
enhances glycogen synthesis by phosphorylating
glycogen synthase kinase 3 (GSK3), linking growth
factor signaling to energy storage pathways [136, 137].

The PI3K/AKT/mTOR pathway also plays a
pivotal role in lipid metabolism. AKT activates
SREBP1c, a master regulator of lipogenesis, leading to
the upregulation of lipogenic enzymes such as FASN
and ACC. mTORC1 indirectly controls SREBP1
nuclear translocation through the activation of S6K1
and CREB, reinforcing fatty acid synthesis [138]. In
parallel, mTORC1 inhibits lipolysis, promoting
energy storage to sustain tumor growth. mTORC2
also modulates lipid metabolism by phosphorylating
AKT, which in turn suppresses Forkhead box C2
(FoxC2), a transcription factor that regulates lipid
homeostasis. Additionally, mTORC1 promotes fat
synthesis through downstream regulation of PPARy
and Lipinl, further enhancing lipid availability to fuel
tumor progression [139]. Dysregulated lipid
metabolism not only provides energy but also
generates membrane components and signaling
lipids, supporting tumor growth and metastasis.

The mTORC1 complex integrates amino acid
availability to regulate protein synthesis and cellular
growth. Among amino acids, leucine is a critical
activator of mTORC1. Leucine binds to Sestrin2,
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disrupting its inhibitory interaction with the GATOR2
complex, leading to mTORC1 activation. This
activation drives protein synthesis via
phosphorylation of downstream effectors such as S6
kinase 1 (56K1) and elF4E-binding protein 1 (4EBP1),
thereby promoting ribosomal biogenesis and
translation of growth-related mRNAs [140, 141].

Conversely, under nutrient-deprived conditions,
mTORC1 inhibition triggers autophagy to recycle
cellular components and maintain energy balance.
Autophagy provides an alternative energy source
during metabolic stress, highlighting the dual role of
mTORC1 in balancing anabolism and catabolism.
[142,143].

In addition to protein synthesis, the
PIBK/AKT/mTOR  pathway regulates glutamine
metabolism, the TCA cycle, and the PPP. mTORC1
enhances glutaminolysis to fuel the TCA cycle,
providing essential intermediates for biosynthetic
pathways. Furthermore, activation of the PPP
generates NADPH and ribose-5-phosphate, which are
critical for redox homeostasis and nucleotide
synthesis.

The PI3K/AKT/mTOR signaling pathway plays a
central role in orchestrating cancer cell metabolism,
integrating signals to regulate glycolysis, lipid
synthesis, protein synthesis, and amino acid
metabolism. Through its downstream effectors,
mTORC1 and mTORC2, this pathway ensures
metabolic flexibility, enabling cancer cells to thrive
under  diverse  conditions.  Targeting  the
PIBK/AKT/mTOR axis offers significant therapeutic
potential, as evidenced by the clinical success of drugs
such as Alpelisib and Everolimus. Future strategies
should focus on overcoming therapy resistance
through combination treatments, paving the way for
more personalized and effective cancer therapies
[144].

HIF-a, MYC, and metabolic adaptation

TME is characterized by hypoxia and acidity,
largely driven by the rapid proliferation of tumor cells
and the Warburg effect. HIF-1a is a master regulator
that enables cancer cells to adapt to hypoxic
conditions by orchestrating transcriptional programs.
Under normoxic conditions, HIF-1a is hydroxylated
by proline hydroxylase (PHD), facilitating its
interaction with von Hippel-Lindau protein (pVHL),
which tags HIF-1a for proteasomal degradation. In
hypoxia, PHD activity is suppressed, stabilizing
HIF-1a, which then dimerizes with HIF-1 to bind
hypoxia response elements (HRE) in target gene
promoters, activating pathways involved in
glycolysis, angiogenesis, and survival [145, 146].

HIF-1a plays a pivotal role in tumor metabolism

by promoting glycolysis through the upregulation of
GLUT1, HK2, and LDHA. Furthermore, it enhances
angiogenesis by stimulating VEGF expression,
promoting nutrient supply to hypoxic regions of
tumors. Importantly, HIF-1a also affects immune cell

function within the TME. HIF-1 a not only helps

tumor cells adapt to the hypoxic environment, but
also helps T cells adapt to the hypoxic environment,
enhancing the killing effect of T cells on tumors, and

the absence of HIF-1a impairs the cytotoxicity of T

cells. Targeting HIF-1a has been shown to suppress
PD-L1 expression on tumor and myeloid cells,
enhancing the efficacy of ICIs like anti-CTLA-4
antibodies [147, 148].

MYC, encoded by the proto-oncogene MYC, is
another critical transcription factor that cooperates
with HIF-la to drive metabolic adaptation. MYC
regulates genes involved in glucose uptake (GLUTI)
and glycolysis (HK2, PFK1), enhancing the glycolytic
capacity of tumor cells. Under hypoxic conditions,
HIF-1a and MYC act synergistically to promote the
expression of PKM2, a key enzyme that regulates the
balance of glycolytic intermediates between ATP
production and biosynthetic pathways, such as the
PPP and serine biosynthesis [149, 150].

In addition to affecting glycolysis, MYC also
reprograms lipid metabolism by interacting with
SREBP1, driving fatty acid and cholesterol synthesis.
MYC  upregulates  3-hydroxy-3-methyl-glutaryl
coenzyme A reductase (HMGCR), the rate-limiting
enzyme in cholesterol biosynthesis, further enhancing
tumor cell proliferation and survival [151].
Interestingly, HIF-la and MYC exhibit a dynamic
interplay. While MYC can upregulate HIF-1a under
certain conditions, HIF-la can also inhibit MYC
activity by activating MXI-1, a MYC antagonist, to
prevent excessive cell growth under hypoxia [152]
[153].

HIF-1a and MYC are two core transcription
factors for tumors to adapt to the hypoxic
microenvironment. They jointly drive tumor
progression and survival through the coordinated
regulation of glycolysis, lipid metabolism, and
angiogenesis.

Cancer stem cell metabolic characteristics and their
regulation

CSCs constitute a subpopulation of cancer cells
endowed with self-renewal capacity, multipotency,
and resistance to therapy. Metabolic reprogramming
is critical for the maintenance of CSCs, allowing them
to generate sufficient energy and biosynthetic
precursors for survival and proliferation. Unlike
differentiated tumor cells, CSCs exhibit remarkable
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metabolic plasticity, shifting between glycolysis and
oxidative phosphorylation (OXPHOS) based on
microenvironmental conditions.

Lipid metabolism plays a particularly vital role
in CSC biology. CSCs display elevated lipid synthesis
and storage, contributing to chemoresistance,
invasion, and metastasis. Reprogramming of lipid
metabolism enhances CSC membrane fluidity and
mitochondrial function, enabling adaptation to
metabolic stress [154-156]. Autophagy, a key regulator
of lipid turnover in CSCs, further supports survival
by providing energy and substrates during nutrient
deprivation. While autophagy can suppress
tumorigenesis, in CSCs it often enhances stemness,
survival, and therapy resistance [157, 158].

The signaling pathways that regulate CSCs
include the Wnt/p-catenin, PI3K/AKT/mTOR, Notch,
Hedgehog, and JAK/STAT3 pathways. In breast cancer
and pancreatic cancer, Notch signaling is activated
and contributes to the maintenance of stemness in
CSCs. Hif-1a-activated Notch signaling can promote
CSCs-associated tumor metastasis in lung, ovarian,
and breast cancer. Moreover, it has been shown that
many genes expressed by CSCs can, in turn, activate
Notch signaling [159, 160].

The WNT/p-catenin signaling pathway involves
the binding of WNT ligands to Frizzled and
low-density lipoprotein receptor-related protein
(LRP) receptors, thereby disinhibiting [-catenin.
Meanwhile, overexpression of the WNT/B-catenin
signaling pathway can maintain CSC stemness,
leading to resistance to related therapies [161].

The JAK/STATS3 signaling pathway is involved in
many cellular physiological processes. It has been
shown that JAK2/STAT3 signaling upregulates cyclin
D2 and stemness-related transcription factors,
maintains CSC stemness, and promotes tumor
metastasis through mesenchymal transition (EMT).
Inhibition of the JAK2/STAT3 signaling pathway can
impair the stemness of CSCs [162-164].

Moreover, many other signaling pathways do
not work independently but interweave and regulate
each other through complex networks to jointly
influence the properties and behavior of CSCs. In
summary, HIF-la and MYC are key drivers of
metabolic reprogramming, enabling cancer cells to
adapt to hypoxia and sustain growth through
glycolysis, lipid synthesis, and biosynthesis. In
parallel, CSCs exhibit metabolic flexibility, relying on
lipid metabolism, autophagy, and key signaling
pathways to maintain stemness and therapy
resistance. Targeting these interconnected pathways
provides a promising therapeutic strategy for
disrupting tumor progression and overcoming
treatment resistance.

3.2 Metabolic reprogramming and tumor
microenvironment

Role of immune-cell metabolism in urologic cancers

The metabolic environment (such as pH, hypoxic
environment, etc.) in the TME and the cytokines and
chemokines secreted by the tumor jointly affect the
function of immune cells in the microenvironment,
resulting in immune cells eventually playing
anti-tumor or pro-tumor roles. Neutrophils recruited
in the TME can exert anti-tumor effects by promoting
the expression of genes such as CXCL1, CXCL2, and
CXCL5 [165].

TAMs are among the most abundant immune
cells in the TME and exhibit functional plasticity with
two major polarization states: M1-like TAMs, which
are pro-inflammatory and anti-tumorigenic, and
M2-like TAMs, which are immunosuppressive and
pro-tumorigenic [166]. M2-like TAMs promote tumor
progression by secreting pro-angiogenic factors such
as VEGF and PDGEF, activating vascular endothelial
growth factor receptor 2 (VEGFR-2) on endothelial
cells to drive angiogenesis. Additionally, M2 TAMs
secrete immunosuppressive cytokines such as TGF-p
and TNF-a, which suppress immune surveillance and
facilitate tumor immune evasion [167, 168].

Metabolic competition within the TME also
influences TAM function. For example, TAMs
preferentially utilize glucose, promoting
O-GlcNAcylation of Cathepsin B, enhancing its
maturation and contributing to metastasis and
chemotherapy resistance in mouse models [169]. In
contrast, M1-like TAMs rely on glycolysis to produce
cytotoxic mediators, underscoring the potential of
metabolic reprogramming to shift TAMs toward a
tumor-suppressive phenotype.

Tumor-associated neutrophils (TANs), like
TAMs, display functional polarization into two
phenotypes: N1-like TANSs, which are
anti-tumorigenic, and N2-like TANs, which are
pro-tumorigenic. N1-like TANSs can directly kill tumor
cells and inhibit their proliferation by secreting large
amounts of ROS and hypochlorous acid [170].
Meanwhile, N1-like TANs exhibit anti-tumor activity
by enhancing T cell responses and producing
pro-inflammatory cytokines.

However, interestingly, low concentrations of
ROS can promote tumor growth and related
signaling, while high concentrations of ROS have
damaging effects on tumor cells, leading to genetic
toxicity and pro-apoptotic effects [171]. N2-like TANs
promote tumor progression through multiple
mechanisms, including the secretion of IL-1p, matrix
metalloproteinases (MMPs), and neutrophil elastase,
which enhance tumor cell migration, invasion, and
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metastasis by remodeling the ECM and facilitating
extravasation of cancer cells into pre-metastatic niches
[172]. The polarization and metabolic rewiring of
TANSs are regulated by environmental factors in the
TME, such as hypoxia and nutrient availability,
providing a potential therapeutic opportunity to
reprogram TANs toward an anti-tumor phenotype
[173].

Other immune cells, such as eosinophils and
mast cells, further contribute to the metabolic
reprogramming of the TME. Eosinophils exert
anti-tumor activity through cytotoxic granules but can
promote immunosuppression by secreting IL-4 and
IL-13, favoring M2 macrophage polarization.
Similarly, mast cells secrete pro-angiogenic mediators
like VEGF and histamine, promoting tumor
progression, while under certain conditions, they
enhance T cell recruitment and anti-tumor immunity.
This duality highlights the complexity of immune cell
functions in the metabolically reprogrammed TME.

The interplay between immune-cell metabolism
and the TME provides promising therapeutic
opportunities in urologic cancers. Strategies aimed at
reprogramming immune cell metabolism—such as
targeting fatty acid oxidation (FAO) in TAMs,
inhibiting neutrophil elastase to reduce TAN
pro-tumor effects, and modulating cytokine
production—can shift the immune balance toward
anti-tumor activity. Combining metabolic therapies
with ICIs has shown potential to synergistically
enhance immune responses, representing a promising
approach to improve treatment outcomes in urologic
malignancies [174-176].

Metabolic effects of tumor-stroma interactions

Tumor stroma consists of ECM components and
a variety of cell populations. It plays a crucial role in
the occurrence, development, metastasis, and drug
resistance of tumors. Stromal cells include CAFs,
cancer-associated adipocytes, and cancer-associated
endothelial cells, among which CAFs are the most
important cells. CAFs can construct ECM (which can
lead to matrix sclerosis) and secrete many cytokines
and chemokines (such as CCL2, CCL5, and CXCL5)
[177,178].

Fibroblasts and mesenchymal stromal cells in the
tumor stroma secrete cytokines such as HGF and FGF
to promote angiogenesis, whereas stromal-related
factors such as ISF-1 and IGF-2 promote tumor cell
infiltration [179]. Among them, the competition
between tumor cells and T cells for glucose can lead to
the hyporeactivity of T cells, leading to immune
suppression and thereby promoting tumor
progression [180, 181]. In addition, glycolysis and
mitochondrial activity in CAFs are increased due to

increased stiffness, which promotes lactate secretion,
and TCA cycle intermediates are increased. These
findings suggest that matrix hardening promotes
glucose metabolic reprogramming [182]. However,
there was no significant change in mitochondrial
activity in tumor cells.

For amino acid metabolism, studies have shown
that tumor cells secrete glutamate (Glu) and absorb
aspartic acid (Asp), whereas CAFs secrete Asp and
absorb Glu. Both tumor cells and CAFs have
increased glutamine (GIn) consumption in sclerotic
stroma, and the expression of GIn metabolism-related
genes is up-regulated. The GIn-dependent exchange
of Asp and Glu between CAFs and tumor cells
promotes tumor activity. CAF-derived ASPs maintain
cancer cell proliferation, while cancer cell-derived
GLS balances the REDOX state of CAF to promote
ECM remodeling [182]. It has also been shown that
autophagy in CAFs can produce alanine, which can be
used by pancreatic ductal adenocarcinoma (PDAC)
cells to promote the TCA cycle [183].

The presence of stromal cells reduces the efficacy
of drug therapy by increasing interstitial hydraulic
pressure and regulating the ability of chemical drugs
to cross capillaries. Moreover, stromal cells can
directly reduce the sensitivity of tumor cells to
chemotherapeutic drugs and tyrosine kinase
inhibitors [184].

In summary, the stiffness of the matrix in TME
can regulate the function of tumor cells. On the one
hand, sclerosing ECM inhibits the infiltration and
function of immune cells, promoting drug resistance
in tumor cells. On the other hand, sclerosing ECM
promotes glucose metabolism reprogramming or
amino acid exchange, as well as the interaction
between stromal cells and tumors, jointly promoting
tumor progression.

4. Metabolic reprogramming as a
therapeutic target

4.1 Progress in metabolic targeted therapy

Metabolic inhibitors in bladder cancer

The drug treatment of bladder cancer mainly
includes the following categories: chemotherapy
drugs, targeted therapy drugs, ICIs, metabolic
inhibitors, and ADC drugs. Chemotherapy regimens
are generally divided into the following: 1.
Gemcitabine combined with cisplatin (GC regimen);
2. ddMVAC (dose-dense methotrexate, vinblastine,
doxorubicin, and cisplatin) combined with growth
factors; 3. CMV regimen (cisplatin, methotrexate, and
vinblastine).
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Table 1. Key pathways of metabolic reprogramming in urinary tumors and their influence.
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Metabolic inhibitors are currently a hot research
field. For glucose metabolism, 2DG, an HK2 inhibitor,
has been shown to reduce bladder cancer cell
viability, proliferation, migration, and invasion in
vitro and in vivo preclinical UBC models [58]. It has
also been shown that oridonin forms a covalent bond
with Cys-813 near the glucose-binding domain of
HK1, thereby inhibiting its enzymatic activity. This
enhances the expression of lactic acid, thereby
alleviating the immunosuppressive effect of lactic acid
on CD8+ cells. Oridonin combined with a PD-L1
inhibitor can also enhance the killing effect of CD8+T
cells on bladder cancer. These results suggest that
targeting HK1 and HK2 may be potential targets for
the treatment of bladder cancer [185]. Similarly,
inhibition of PFK-1 inhibited the proliferation of
bladder cancer cell line T24. However, no effective
PFK-1 inhibitor has been used in clinical patients due
to its safety [186].

For amino acid metabolism, studies have found
that chemotherapy can upregulate the expression of
tryptophan  metabolism enzyme IDO1 and
tryptophan transporter SLC7A5, which enhances the
tumor uptake of tryptophan and its metabolism to the
downstream product kynurenine (Kyn). Kyn inhibits

colk 96,214
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grow th and 127-130
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and killhg renal 103,180—-182

cancercelk

13,25,26,28-31,55—
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139,156-159
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STING-dependent type I interferon production by
enhancing STING protein degradation through
activation of the "AhR-CUL4B-RBX1" E3 ubiquitin
complex. Dietary tryptophan restriction, blockade of
the key rate-limiting enzyme IDO1 of tryptophan
metabolism, or inhibition of cellular tryptophan
import also contribute to the inhibition of tumor
progression, suggesting that tryptophan metabolism
plays an important role in chemotherapy resistance in
bladder cancer, which provides a new perspective for
the development of therapeutic strategies for bladder
cancer targeting the tryptophan metabolism pathway
[187].

Lipid metabolism reprogramming is one of the
important reasons for the progression and metastasis
of bladder cancer; thus, regulating lipid metabolism is
highly important for the treatment of bladder cancer.
For lipid metabolism, FASN is highly expressed in
bladder cancer, and FASN has a high targeting ability
in bladder cancer. The use of FASN inhibitors for the
treatment of bladder cancer is expected to have high
efficacy and fewer toxic side effects. The efficacy and
safety of TVB-2640 in anti-tumor have been clinically
investigated in phase I clinical trials [96], and FASN
inhibitors were developed for bladder cancer. FASN
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inhibitors affect tumor lipid metabolism, suggesting
their promise in combination with other agents such
as ICIs. Current drugs include cerulenin, orlistat,
TVB-2640, and so on. TVB-2640 combined with
bevacizumab has shown positive results in a phase II
clinical trial of recurrent glioblastoma in patients with
first recurrence of high-grade astrocytoma (clinical
trial registration number: NCT03032484). FASN may
be a potential therapeutic target for bladder cancer,
and inhibition of FASN expression is expected to
become a new method for the treatment of bladder
cancer. In addition, validated through clinical trials,
Erdafitinib (Balversa) has been approved by the FDA
for locally advanced or metastatic urothelial
carcinoma (UC) carrying susceptible FGFR3 or FGFR2
gene alterations, making it the first FGFR kinase
inhibitor in adult patients. This finding highlights the
potential and application value of erdafitinib in the
treatment of bladder cancer instead of chemotherapy
[188].

The treatment of bladder cancer is developing
from traditional chemotherapy to more precise
targeted and immunotherapy. Inhibitors targeting
metabolic reprogramming (sugar, amino acid, lipid
metabolism) are new strategies with great potential.
They can not only directly kill tumor cells, but also
regulate the tumor microenvironment, overcome
drug resistance, and synergize with existing
immunotherapies.

The potential of targeting lipid metabolism in renal cell
carcinoma

Renal cell carcinoma is considered a metabolic
disease, and fatty acid metabolism is important in the
progression of ccRCC. Targeting fatty acid
metabolism may be a potential way to reverse drug
resistance and improve the prognosis of ccRCC. GPR1
and CMKLR1 of G protein-coupled receptors (GPCRs)
are involved in the regulation of lipid metabolism in
clear cell renal cell carcinoma (ccRCC). They limit
lipolysis by inhibiting adipose triglyceride lipase
(ATGL), and CMKLR1 regulates lipid uptake.
Inhibition of CMKLR1 inhibited lipid formation and
induced cell death, including apoptosis, ferroptosis,
and autophagy. Targeted inhibition of CMKLR1 via 2-
(a-naphthyl) ethyltrimethylammonium  iodide
(a-NETA) significantly inhibited ccRCC growth [189].

On the other hand, it has been suggested that
PHEFS is an important regulator of lipid deposition in

ccRCC. Phf8 promotes lipid deposition by
transcriptionally =~ upregulating  glutamic  acid
ammonia ligase @ (GLUL). GLUL inhibitor
L-methionine sulfoxide (MSO), combined with

everolimus, can effectively inhibit lipid deposition
and tumor growth in renal cell carcinoma, providing a

new treatment strategy for renal clear cell carcinoma
[111]. Stearoyl-CoA desaturase 1 (SCD1) can
desaturate  saturated fatty acids (SFA) to
monounsaturated fatty acids (MUFA), thereby
promoting ccRCC progression [190]. Inhibition of
SCD1 can limit the growth of tumor cells, and the
combination of SCD1 inhibitors with mTOR inhibitors
may have an inhibitory effect on lipid metabolism in
renal cancer, which may lead to a new therapeutic
approach [191].

The key regulatory factor of fatty acid synthesis
metabolism, malonyl CoA decarboxylase (MLYCD), is
significantly downregulated in renal clear cell
carcinoma, and low expression is associated with poor
prognosis in patients. Restoring MLYCD expression
in renal clear cell carcinoma cells reduces intracellular
malonyl CoA content, inhibits de novo synthesis of
fatty acids, and promotes fatty acid transfer to
mitochondria for oxidation. Overexpression of
MLYCD can block lipid droplet accumulation in
cancer cells, disrupt endoplasmic reticulum and
mitochondrial homeostasis, increase reactive oxygen
species levels, and induce ferroptosis. In addition,
overexpression of MLYCD reduced tumor growth
and reversed resistance to sunitinib in vitro and in vivo
[192].

The above studies all suggest that targeted
therapy targeting lipid metabolism reprogramming
has the potential to become a new therapy for renal
clear cell carcinoma, which requires further clinical
research exploration.

Strategies for combining metabolic interventions with
prostate cancer treatment

Nonsurgical treatment of prostate cancer is
typically ADT, which includes the use of AR
inhibitors (e.g., bicalutamide, apalutamide) and
androgen synthesis inhibitors (e.g., abiraterone).
GnRH agonists induce down-regulation and
desensitization of GnRHR by inducing sustained
stimulation of the pituitary gland, resulting in
decreased luteinizing hormone (LH) release and
suppression of testosterone production to castrate
levels. This class of agents (e.g., goserelin and
leuprolide) is now widely used in patients with
advanced prostate cancer to control disease
progression [193, 194].

Moreover, prostate tumors are highly dependent
on lipids for energy, growth, and survival. It has been
reported that ACSM1 and ACSM3 are directly
regulated by AR in prostate cancer, and they promote
FAO to fuel cancer cells. These two enzymes enhance
proliferation and protect PCa cells from death in vitro.
Targeting ACSM3 resulted in reduced tumor growth,
revealing a link between AR and lipid metabolism,
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and future development of drugs targeting ACSM1
and ACSM3 is expected to explore new therapies in
combination with traditional ADT therapy [116].

In addition, ATGL is an enzyme that controls
lipid droplet homeostasis, and its expression is
associated with poor overall survival in patients with
CRPC. The data suggest that ATGL can be used as a
therapeutic target for CRPC, and the main problem is
to target the potential effect of ATGL on the heart,
which also provides a new perspective for the
treatment of prostate cancer metabolism [195].

For amino acid metabolism, the protein
expression level of branched-chain amino acid
transaminase 2 (BCAT?2) is significantly increased in
prostate cancer cells, which allows cancer cells to
more efficiently use branched-chain amino acids
(BCAAs) as energy sources and raw materials for
biosynthesis, thereby promoting the rapid growth of
cancer cells. This also provides ideas for the
subsequent development of targeted drugs for the
treatment of prostate cancer [196].

In summary, the reprogramming of lipid
metabolism and amino acid metabolism in prostate
cancer has been studied, demonstrating the potential
of metabolic intervention in the treatment of prostate
cancer. By targeting specific metabolic pathways and
enzymes, more effective treatment options for
prostate cancer patients can be provided in the future.

4.2 Combination of metabolic targets and
immunotherapy

Synergy of metabolic regulation and immune
checkpoint inhibitors

TME is a metabolically hostile niche where
cancer cells exploit immune checkpoints to evade
immune surveillance. ICIs, such as anti-PD-1/PD-L1
and anti-CTLA-4 therapies, have revolutionized
cancer treatment by reactivating T cell-mediated
immunity. However, a substantial proportion of
patients fail to derive clinical benefits from ICIs due to
factors such as metabolic competition in the TME,
which suppresses immune cell function.

Tumor cells consume excessive glucose, limiting
nutrient availability for T cells and impairing their
glycolytic activity, a critical process for effective T cell
activation and function. PD-1 signaling plays a pivotal
role in T cell metabolic reprogramming. It inhibits
glucose uptake and glycolysis while promoting FAO
via the AMPK-CPTIA axis. This metabolic shift
reduces T cell effector function and promotes
exhaustion [197]. Notably, PD-L1 expressed on tumor
cells directly enhances tumor glycolysis by activating
the PI3K/AKT/mTOR pathway, creating a metabolic
advantage for tumor survival and further suppressing

T cell activity [198].

Therefore, targeting PD-1/PD-L1 not only
restores T cell glycolysis and effector function but also
reduces tumor glucose consumption, creating a
synergistic anti-tumor effect. These insights highlight
the therapeutic potential of combining ICIs with
glucose metabolism inhibitors to reprogram the TME
and improve immunotherapy outcomes.

In addition to glucose metabolism, amino acid
metabolism, particularly arginine (Arg), plays a
critical role in immune suppression within the TME.
Arginine depletion by myeloid-derived suppressor
cells (MDSCs) leads to impaired T cell proliferation
and function. Recent studies have shown that
CB-1158, an orally active arginase inhibitor, restores
arginine availability, promoting the infiltration of
CD8+ T cells and NK cells into the tumor. CB-1158 not
only reduces myeloid cell-mediated immune evasion
but also enhances tumor growth inhibition when
combined with PD-L1 blockade or chemotherapy
(e.g., gemcitabine) in preclinical models (186). This
evidence underscores the importance of targeting
arginine metabolism as a strategy to synergize with
ICIs, enhancing immune activation and tumor
clearance [199].

Lipid metabolism 1is another critical axis
influencing immune function in the TME.
Tumor-associated dendritic cells (TADCs), under
lipid overload conditions, exhibit impaired antigen
presentation, contributing to immune evasion
[200-202]. An innovative approach using multi-layer
lipid reprogramming nanoparticles (TS-PP@FU) has
been developed to specifically deliver lipid
metabolism inhibitors to TADCs. These nanoparticles
synergistically inhibit exogenous lipid uptake,
endogenous lipid synthesis, and lipogenic gene
transcription in TADCs, thereby restoring their
anti-tumor immune function. Furthermore, this
strategy enhances the efficacy of ICIs, such as
anti-PD-1 monoclonal antibodies, and overcomes
resistance to immune checkpoint blockade [203]. The
integration of lipid metabolism-targeting strategies
with ICIs represents a promising approach to improve
immunotherapy outcomes. By modulating lipid
reprogramming in immune cells, this combination
therapy reshapes the immune landscape of the TME,
restoring dendritic cell function, improving T cell
activation, and amplifying the anti-tumor response.

The combination of metabolic regulation and
ICIs represents a powerful strategy for enhancing
anti-tumor immunity in cancer therapy. Targeting
glucose metabolism restores T cell function and
reduces tumor metabolic dominance, while inhibiting
arginine metabolism alleviates immunosuppression
mediated by  myeloid cells. Additionally,
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interventions in lipid metabolism improve dendritic
cell function and overcome resistance to ICIs. These
synergistic approaches provide new avenues for
reprogramming the TME, overcoming immune
evasion, and enhancing the efficacy of
immunotherapy in urologic cancers. Future research
focusing on the identification of precise metabolic
targets and their integration with ICIs will accelerate
the development of personalized combination
therapies for cancer patients.

Impact of metabolic reprogramming on immune
escape

Tumor cells change their energy metabolism to
adapt to the hypoxic and nutrient-deficient
microenvironment through metabolic
reprogramming. The main features of metabolic
reprogramming  include abnormal glucose
metabolism, amino acid metabolism, and lipid
metabolism, which are the key factors leading to TME
immunosuppression and tumor immune escape.

Glucose is an important source of cellular
energy, and tumor cells tend to produce energy
through the glycolytic pathway, which is called the
Warburg effect [17]. The high lactate content and the
concomitant acidified TME in tumors will inhibit the
function of immune cells, cancel the immune
surveillance of cancer, and eventually lead to immune
escape. CD8+T cells are key mediators of anti-tumor
immunity, and after continuous stimulation of the T
cell receptor (TCR) in the TME, they lead to T cell
exhaustion and eventually tumor immune escape
[204]. However, the latest research has found that
CD8+T cells are not immune. Exhausted T cells highly
express the solute carrier (SLC) protein MCT11,
promoting their uptake of lactate, and blockade of
MCT11 restores T cell function [205]. And HK2 not
only participates in glycolysis, but also activates the
NF-xB pathway, promotes PD-L1 expression, and
leads to tumor immune escape. The combination of
HK?2 inhibitors and PD-1 antibodies can significantly
enhance the activity of CD8+T cells and improve
therapeutic efficacy [206].

In amino acid metabolism, GIn deficiency
inhibits T cell proliferation and cytokine production,
while supplementation with Gln precursors does not
restore the phenotype, suggesting that T cells are
heavily dependent on extracellular Gln uptake [207].
Tumor cells exhibit strong uptake of Gln, leading to a
decline in the function of tumor-infiltrating
lymphocytes (TILs) and contributing to tumor
immune escape [53]. In addition to GIn, Arg and Asn
are also depleted in TME, and Arg deficiency leads to
a bias of T cell metabolism away from OXPHOS
toward glycolysis, attenuating T-cell antitumor

activity [50]. Similar to the use of GIn, tumor cells use
Asn to promote their own proliferation, while
depletion of Asn impairs CD8+T cell activation [208].
Furthermore, many amino acid deficiencies jointly
lead to tumor proliferation and immune escape
through various pathways [209].

Lipid metabolism reprogramming is not limited
to tumor cells, but is closely related to the function of
immune cell infiltration into TME, and lipid
accumulation in dendritic cells induces endoplasmic
reticulum stress, which reduces antigen presentation
[210]. Lipids are closely related to various immune
cells and their phenotypic transformation in TME.
Lipid metabolism reprogramming in the TME
increases lipid absorption and oxidation to increase
the efficiency of energy metabolism in tumor cells
while limiting the nutritional source of CD8+ T cells
and impairing their function [211]. For T cells, lipid
accumulation is associated with increased CD36
expression on CD8 TILs, which promotes OxLDL
uptake. Promotes lipid peroxidation as well as p38
activation. It causes dysfunction of T cells [212]. In
addition, endoplasmic reticulum stress induced by
cholesterol accumulation leads to T-cell exhaustion,
which promotes tumor immune escape [213]. In
contrast, inhibition of lipid metabolism can restore T
cell antitumor responses. Recent studies have found
that blocking the sphingolipid production pathway in
cancer cells, especially through the regulation of
interferon-y  (IFN-y) signaling pathway, can
effectively enhance the anti-tumor proliferation
efficacy of natural killer cells and CD8+T cells [214].

In summary, the three major metabolic
reprogramming processes of tumor cells, on the one
hand, can take nutrients from TME to maintain their
proliferation and invasion, on the other hand, they
can promote the downregulation or depletion of TILs,
thereby promoting immune escape. Studies have also
shown that the regulation of metabolism can restore
the anti-tumor response to a certain extent, which
makes us look forward to the combination of
metabolic inhibitors with other targeted drugs in the
future, so that patients can achieve better efficacy.

5. Future prospects

Prospects for exploration and application of
novel metabolic markers

Metabolic reprogramming is one of the hallmark
features of tumor cells. In urinary system tumors
(such as ccRCC, BCa, etc.), tumor cells meet the
energy and material requirements of rapid
proliferation by changing their metabolic mode (such
as glycolysis, amino acid metabolism, lipid
metabolism, etc.), and adapt to the tumor
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microenvironment. These metabolic changes are often
driven by specific gene mutations or signaling
pathway abnormalities, and leave specific clues, that
is, potential biomarkers.

Current research has revealed reprogramming of
multiple metabolic pathways in urinary tract tumors
and identified some potential biomarkers from them.

For example, in lipid metabolism, studies have
shown that MLYCD, FASN, ACSM, and ACSL play
important roles in the progression of urinary tract
tumors. Some of these molecules have also been
explored in clinical drug research, such as TVB-2640
and other drugs.

Among the biomarkers related to amino acid
metabolism, histone deacetylase 7 (HDAC7) can
suppress the expression of branched chain amino acid
(BCAA) catabolizing enzymes such as BCAT2 and
BCKDHA through epigenetic means, leading to
BCAA accumulation, activating the NOTCH signaling
pathway and upregulating the SNAIL1 transcription
factor, promoting epithelial mesenchymal transition
(EMT) and renal tumor metastasis [215]. In bladder
cancer, the acquired mutation of isocitrate
dehydrogenase 2 (IDH2) can induce reductive
glutamine metabolism, stabilize the expression of
HIF-1a, thus stimulate aerobic glycolysis and pentose
phosphate pathway (PPP), and promote gemcitabine
resistance [216]. Regarding other metabolic pathways,
studies have also shown that high expression of
peroxisome proliferator-activated receptor gamma
coactivator 1 alpha (PGC-1 alpha) is associated with
enhanced mitochondrial biosynthesis and oxidative
phosphorylation, which can promote cancer
metastasis. Interventions targeting PGC-la may
inhibit metastasis [217].

Among the phosphoinositide (PI)
metabolism-related markers, the study found that the
phosphoinositide metabolism score (PIMS) was
related to the prognosis of urinary system cancer
(kidney cancer, bladder cancer, prostate cancer), and
the prognosis of patients with low PIMS was poor.
PNPLA?7 has been identified as a core prognostic gene
in PI metabolism, and its expression loss is closely
related to tumor progression [218].

For bladder cancer, urinary metabolic markers
are of great value for the diagnosis and prognosis of
bladder cancer. Studies have shown that metabolites
in the urine can reflect the presence of a tumor or the
body's response to the tumor, such as reduced
hippuric acid and citrate levels [219]. Hematuria is a
common symptom of urological tumors, for which
studies have found that 4-ethoxymethyl phenol,
prostaglandin F2b, etc., help to distinguish BC from
RCC [220]. However, no urinary metabolites have
been found to distinguish BC from PCa. The current

research progress has not found that wurine
metabolites are helpful for the diagnosis and
prognosis of urological tumors.

In summary, the research progress of metabolic
markers in urinary system tumors provides new
strategies and methods for early diagnosis, prognosis
evaluation, and treatment of tumors, and shows
broad application prospects. In the future, more
potential metabolic markers are expected to be found
for the detection and clinical treatment of urologic
tumors. Most of the evidence summarized in the

previous article is based on preclinical or
retrospective studies; Various drugs targeting
metabolic reprogramming still need to be

prospectively validated in clinical trials to confirm the
translational potential of metabolic targets.

Clinical translation and challenges of
metabolic reprogramming targets

The development of drugs targeting the
metabolic reprogramming of tumor cells is one of the
feasible methods for the treatment of tumors. It can be
divided into three aspects: targeting tumor cells,
targeting TME, and regulating systemic metabolism.
For the characteristics of active proliferation of tumor
cells, interfering with nucleotide metabolism is a
feasible way. Synthetic lethality refers to the
phenomenon that two nonlethal genes are inhibited at
the same time, leading to cell death. PARP inhibitors
(PARPiI) are effective in inhibiting tumor proliferation
in BRCA1/2 mutated tumors. Due to the homologous
recombination repair defect (HRD) caused by the
mutation of the tumor BRCA1/2 gene, the DNA
cannot be repaired by the base excision repair (BER)
pathway and homologous recombination repair
(HRR) pathway after the use of PARPi, which
eventually leads to cell death. In clinical trials,
patients with breast, ovarian, pancreatic, and prostate
cancers, including those with BRCA germline
mutations, have benefited substantially from the use
of PARPi [221]. A phase III clinical study
(NCT03732820) of olaparib combined with
abiraterone in the first-line treatment of mCRPC
showed that the combination treatment of mCRPC
patients without HRR mutation screening could
significantly prolong rPFS by 8.2 months (24.8 vs 16.6
months) and reduce the risk of disease progression or
death by 34% In addition, the quality of life of patients
did not significantly decline. This finding suggests
that synthetic lethal strategies have important
potential in combination therapy for treating urologic
tumors [222]. But as mentioned earlier, there are still
many targets that we can explore, such as FASN
inhibitors, HK1, and HK?2 inhibitors, etc.
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At present, there are many ongoing clinical trials
and biomarker validation related to urinary system
cancer. For prostate cancer, the FASN inhibitor
tvb-2640 is the most representative. At present,
tvb-2640 is in phase I clinical trial (NCT05743621), to
explore the prognostic impact of enzalutamide
combined with tvb-2640 on prostate cancer. In
addition, pasritamig (JNJ - 78278343) is currently in
phase I clinical trial (NCT04898634) and plans to start
phase II clinical trial. This is a bispecific antibody that
can simultaneously target kallikrein 2 (klk2) on the
surface of tumor cells and CD3 on the surface of T
cells. It acts like a "bridge" to pull T cells to tumor cells
and activate the killing effect of T cells on tumors.
According to the data published in phase I, 42.4% of
patients achieved PSA50 response, with a median
RPFS of 7.9 months, and the safety was good, without
high-grade cytokine release syndrome. Meanwhile,
the phase IB study of pasritamig combined with
another psma-cd28 bispecific antibody JNJ-87189401
has been started (NCT06095089).

For bladder cancer, a phase II clinical study
(NCT04813107) evaluated oral apl-1202 (a methionine
aminopeptidase type II inhibitor) combined with
tirelizumab (PD-1  inhibitor) compared with
tirelizumab alone. The results showed that the
pathological complete response rate (pCR) of the
combined treatment group and the single agent group
were 41% and 20%, respectively. Notably, in the
subgroup with low expression of PD-L1, the
combination regimen showed a stronger positive
efficacy signal. It is worth noting that its safety as

neoadjuvant therapy for MIBC patients is generally
controllable, although the incidence of
treatment-related adverse events (TRAEs) at any level
in the combination group (59%) is higher than that in
the single agent group (44%). However, 94% of TRAEs
were grade 1 or 2 events, that is, the degree was mild,
and patients were generally able to tolerate them.

For renal cancer, there are few clinical studies on
targeted drugs for metabolic reprogramming, and
there are many preclinical studies at present.
Targeting the FABP1-PLG-PLAT axis inhibits fatty
acid metabolic reprogramming and tumor
angiogenesis by inhibiting fatty acid binding protein 1
(FABP1) and its downstream plasminogen (PLG) -
tissue plasminogen activator (PLAT) signaling
pathway. Targeted inhibition of monoglyceride lipase

(MGLL) affects lipid metabolism and tumor
microenvironment.
But there are many challenges faced in

developing drugs. First, metabolic enzymes may have
different functions in different tissues. Targeting
metabolic enzymes or metabolic pathways can
inevitably damage normal cells. For example, classical
LDH has five isoenzyme forms, which play different
functions in different tissues. Targeting ATGL as
described above may be a feasible treatment for
CRPC, but its potential effects on the heart may lead
to serious drug side effects. This means that the study
of metabolic pathways in different pathological
models cannot be generalized, which brings great
difficulties to the development of drugs.

Table 2. Current progress in clinical development of targeted drugs for metabolic reprogramming.

Metabolic Pathway Target Representative drug / Representative NCT Clinical development stage
modality
Lipid metabolism (fatty FASN TVB-2640 (FASN inhibitor) NCT05743621 Phase I (combination trials in mCRPC and other
acid synthesis) tumors)
Amino acid / glutamine ~ GLS1 Telaglenastat (CB-839) NCT03875313 Phase I/11
metabolism
Glycolysis / lactate MCT1 AZD3965 (MCT1 inhibitor) NCT01791595 Phase I completed (dose-escalation in advanced
transport (SLC16A1) cancers)
Glycolysis regulation PFKFB3 PFK158 (PFKFB3 inhibitor) ~ NCT02044861 Phase I
Lipid signaling / lipid MAGL LEI-515 and other reversible Preclinical / early-stage; no widely Preclinical to exploratory; reversible MAGL
hydrolysis MAGL inhibitors registered late-phase oncology NCTs yet inhibitors reported (LEI-515)
(preclinical)
Arginine metabolism Arginine ADI-PEG20 (pegylated Multiple trials (e.g., NCT02709512 protocol) Phase II/III in some indications (mesothelioma,
deprivation arginine deiminase) sarcoma); explored in ASS1-deficient bladder
(ASS1 cancers (early trials)
deficiency)

Tryptophan - kynurenine  IDO1

(immune metabolism) inhibitors

Epacadostat and other IDO1 Multiple trials (e.g., NCT02752074 was
phase III melanoma)

Phase I-1II historically; several negative phase III
results led to reassessment; still under exploration
in biomarker-selected combos

Fatty acid desaturation /  SCD1 / ACC ~ SCD1/ACC inhibitors Mostly preclinical/early-stage; some ACC  Preclinical to early clinical
synthesis (multiple preclinical and inhibitors have entered Phase I for
early clinical candidates) metabolic diseases and oncology
Immune metabolism KLK2 x CD3  Pasritamig(JNJ-78278343) NCT04898634 Phase I
(Indirectly regulate T cell ~ bispecific
glucose metabolism)
Protein biosynthesis MetAP2 APL-1202 NCT04813107 Phase I/11
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However, there are also successful cases, such as
the up-regulation of FASN expression in lung cancer,
which is associated with poor prognosis, and
inhibitors targeting FASN, such as orlistat, can inhibit
tumor growth by preventing EGFR palmitoylation
and enhancing its ubiquitination [223].

Another challenge is the metabolic fitness and
heterogeneity of tumors, which can shift tumors to
utilize other nutrients for function. Therefore, drugs
targeting the metabolic profile of primary tumors may
not be effective in metastatic tumors and may lead to
drug resistance. In addition, differences in
metabolism within and between tumors may also
reduce drug efficacy, and there may also be
differences in metabolism between different patients
with the same tumor. All of these aspects make drug
development difficult. In summary, metabolic
reprogramming targeting therapy has shown great
potential in clinical translation, but it also faces many
challenges, including an in-depth understanding of
the specific mechanism of metabolic reprogramming,
the development of highly specific small-molecule
targeted drugs, and the optimization of clinical
treatment strategies based on tumor metabolism
dependence.

6. Summary

The critical role of metabolic reprogramming
in urologic cancers

For most tumors, the Warburg effect of tumor
cells promotes an acidic TME environment, which
leads to downregulation of immune cell function and
tumor immune escape. For T cells, abnormal amino
acid metabolism and lipid metabolism can lead to the
downregulation of T cell function or the exhaustion of
T cells. In bladder cancer, the reprogramming of
glucose metabolism rapidly provides ATP, glutamine,
serine, arginine, fatty acids, and lipids to the tumor to
promote its proliferation. Targeted regulation of
certain  processes  of  glucose  metabolism
reprogramming in bladder cancer cells (such as
targeting HK2) can inhibit the proliferation of bladder
cancer cells, and abnormal glucose metabolism may
contribute to drug resistance to chemotherapy drugs.
Some intermediate products or metabolic enzymes of
glucose metabolism reprogramming can be used as
molecular targets for early detection and evaluation of
staging and prognosis of bladder cancer. Clear cell
renal cell carcinoma (CCRCC) is a representative
tumor of metabolic reprogramming in urinary system
tumors. The metabolic reprogramming features of
ccRCC include altered metabolic pathways associated
with VHL gene inactivation and Ras-PI3K-AKT-mTOR
pathway activation, involving aerobic glycolysis, fatty

acid metabolism, and tryptophan, glutamine, and
arginine utilization. These metabolic change
biomarkers for early diagnosis offer new treatment
ideas. Prostate cancer cells are more dependent on
FAO pathways for metabolic reprogramming to
obtain energy substances, which are closely related to
androgens. Therefore, targeting lipid metabolic
pathways and combined androgen deprivation
therapy are major trends in the treatment of prostate
cancer.

Metabolic reprogramming is central to the
progression of urologic cancers and provides a
window of opportunity for therapeutic intervention.
Targeting metabolic pathways, either alone or in
combination with other therapies such as
immunotherapy, holds great potential for improving
outcomes in these cancers. Clinical trials are currently
investigating various metabolic inhibitors, and with a
better understanding of metabolic profiles in
individual tumors, more personalized treatments may
be on the horizon.

Future research directions and potential for
clinical application

The metabolic reprogramming of urological
tumors plays a crucial role in tumor growth, drug
resistance, and immune escape. Future research will
mainly focus on metabolic targeted therapy,
metabolic immune interactions, tumor
microenvironment regulation, and the combination of
metabolomics and precision medicine. In metabolic
targeted therapy, targeting key metabolic enzymes
(such as FASN, SCD1, and ACC) and lipid and
glucose metabolic pathways can inhibit tumor growth
and be combined with immune checkpoint inhibitors
and targeted therapy to form personalized treatment
plans. In terms of metabolic immune interactions,
studying how metabolism affects immune cell
function, such as T cell depletion and macrophage
polarization, and enhances the effectiveness of
immunotherapy by regulating metabolism in the
tumor microenvironment. In addition, research on the
regulation of tumor microenvironment metabolism
focuses on the acidic microenvironment and lactate
metabolism to develop new drugs, such as
anti-angiogenesis and  lactate = dehydrogenase
inhibitors. At present, multiple omics technologies,
such as metabolomics, proteomics, and genomics, can
be used to comprehensively analyze the metabolic
characteristics of urinary tract tumors and identify
new therapeutic targets. If applied in clinical practice,
personalized treatment plans can be customized by
analyzing patients' metabolic characteristics, and
early screening and personalized treatment strategies
can be developed. These studies not only contribute to
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understanding the biological mechanisms of
urological tumors but also provide new targets and
strategies for future treatments.
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