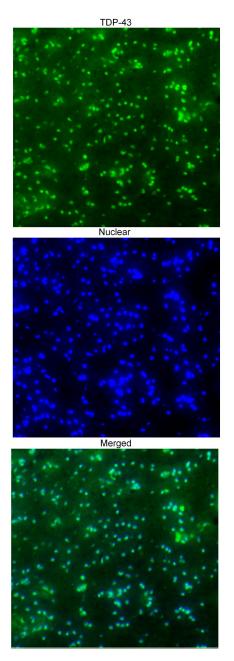
1	Supplementary Materials
2	
3	Alleviation of mutant TDP-43-mediated neuropathology
4	by inducible stem cells in monkeys
5	Authors: Xichen Song ^{1,#} , Caijuan Li ^{1,#} , Yang Yang ^{2,#} , Chunhui Huang ^{1,#} , Min Chen ³ ,
6	Song Lin ⁴ , Zhonghai Huang ¹ , Wei Wang ¹ , Kai Liao ⁵ , Huiyi Wei ⁵ , Lu Wang ⁵ , Hao Xu ⁵ ,
7	Yizhi Chen ¹ , Yingqi Lin ¹ , Jiawei Li ¹ , Zhen Dai ² , Wenguang Xie ² , Xiao Zheng ¹ ,
8	Jianhao Wu ¹ , Jiale Gao ¹ , Jiaxi Wu ¹ , Zhuchi Tu ¹ , Libing Zhou ¹ , Lu Huang ¹ , Chaoran
9	Ren ¹ , Kwok-Fai So ¹ , Peng Yin ¹ , Huiming Yang ⁶ , Shihua Li ¹ , Liangxue Lai ² ,
10	Xiao-Jiang Li ^{1,7} , Sen Yan ^{1,} [™]
11	Affiliations:
12	¹ State Key Laboratory of Bioactive Molecules and Druggability Assessment,
13	Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and
14	Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human
15	Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration,
16	School of Medicine, Jinan University, Guangzhou,510632, China.
17	² Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine,
18	Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,
19	Guangzhou, 510632, China.
20	³ South China Institute of Large Animal Models for Biomedicine, Wuyi University,
21	Jiangmen, 529000, China.
22	⁴ Department of Physiology School of Medicine, Jinan University, Guangzhou, 510632,
23	China.
24	⁵ The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
25	⁶ Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and
26	Treatment of Major Neurological Diseases, Guangzhou, China.
27	⁷ Lingang Laboratory, Shanghai, 201306, China.

- 28 *These authors contributed equally to this work.
- 29
- 30 Corresponding author at: Sen Yan, GHM Institute of CNS Regeneration, School of
- Medicine, Jinan University, No.601 West Huangpu Avenue, Tianhe District,
- Guangzhou Guangdong Province, 510623 China. E-mail: 231yansen@163.com.


Supplementary Figures

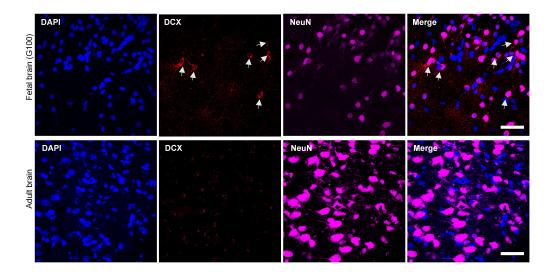
34

35

33

Supplementary Figure 1

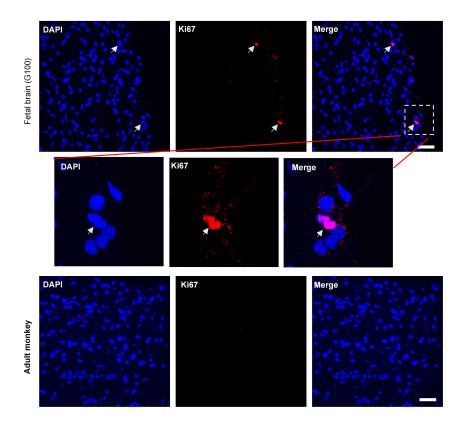
36


37

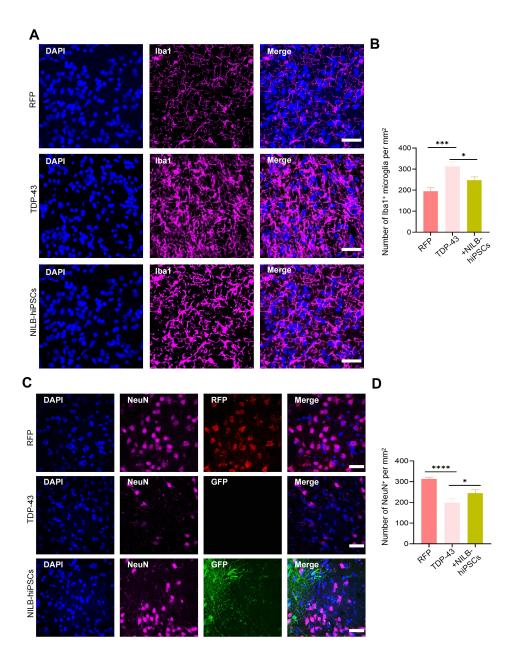
Supplementary Figure 1. Nuclear distribution of endogenous TDP-43 in the

38 monkey brain

- 39 The striatum of wild type monkey was stained with the anti-TDP-43 (G400). The
- 40 nucleus were labeled by DAPI.


41

Supplementary Figure 2. DCX expression (arrows) is minimal in the cortical regions of fetal monkey brains at approximately 100 days of gestation (~G100) and undetectable in adult monkeys aged seven year


The cortical regions of ~G100 and adult monkey were stained with the anti-DCX and anti-NeuN antibodies, The nuclei were labeled by DAPI. Scale bar, 40 µm.

Supplementary Figure 3

Supplementary Figure 3. Ki67 expression (arrows) is minimal or undetectable in the cortical regions of fetal monkey brains at approximately 100 days of gestation (~G100) and in adult monkeys aged seven years

The cortical regions of ~G100 and adult monkey were stained with the anti-Ki67 antibodies, The nuclei were labeled by DAPI. Scale bar, 40 μm.

Supplementary Figure 4. NILB-hiPSCs treatment effectively reduces neuroinflammation levels and mitigates neuronal loss

(A) Representative immunofluorescent fluorescent images of the striatum form TDP-43 or RFP injected monkey. Antibodies for Iba1 and DAPI were used. Scale bar, 40 μm. (B) Quantitative assessment of Iba1-positive cells. (C) Representative immunofluorescent fluorescent images of the striatum from AAV-TDP-43 or RFP injected monkey. Antibodies for NeuN, GFP, RFP, DAPI were used. (D) Quantitative

- assessment of NeuN-positive cells . One-way ANOVA revealed statistical significance
- 69 (*P < 0.05, **P < 0.01, ****P < 0.0001). Data are presented as mean \pm SEM (n=3).
- 70 Scale bars, 40 μm.