Supplementary information

Impact of rare JAK/STAT germline mutations on vaccination-induced innate immune responses in a Tyrolian population

Materials and Methods

Whole genome sequencing data analysis

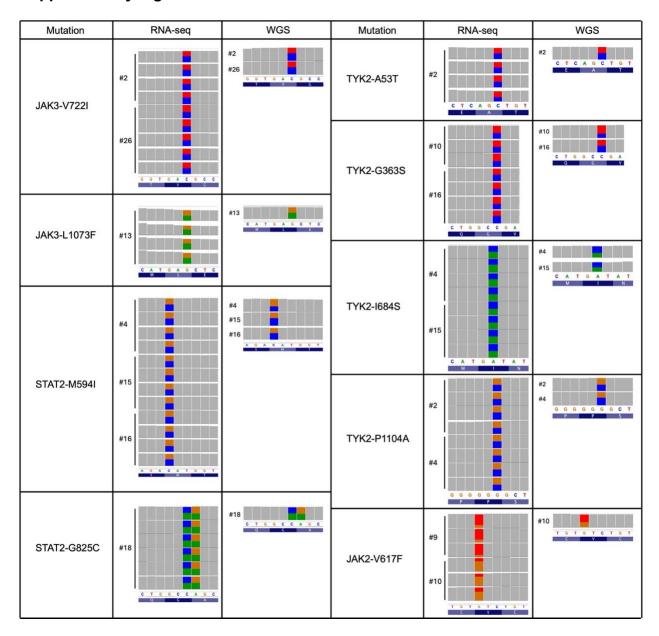
Data analysis was performed using the Parabricks Germline Pipeline (v4.0.1) for germline mutation detection (https://docs.nvidia.com/clara/parabricks/4.0.1/whatsnew.html). Sequencing reads were aligned to the human reference genome (hg38) with BWA-MEM¹. Duplicate reads were marked with Picard tools². The Genome Analysis Toolkit (GATK) was used for base quality score recalibration (BQSR) and variant calling. Variants were called with HaplotypeCaller in gVCF mode, applying a minimum Phred-scaled confidence threshold of 16.

SNP detection in RNA-seq data

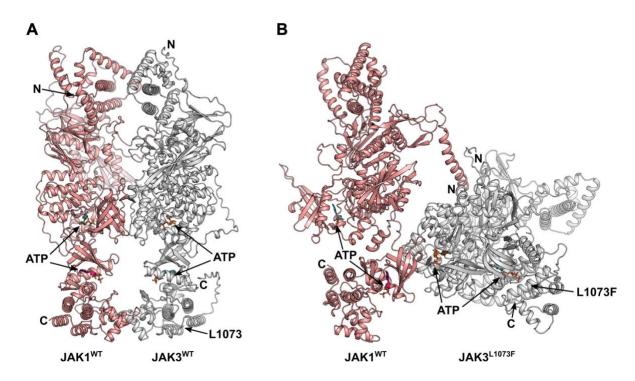
Raw RNA-seq data were subjected to quality control with *FastQC* (v0.11.9) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter trimming and quality filtering were performed using Trimmomatic³ (version 0.36). Reads were aligned to the hg19 reference genome with the STAR two-pass procedure⁴ (version STAR 2.7.9a). Aligned reads were further processed with BWA MEM¹ (version 0.7.15) and duplicates were marked using Picard tools² (version 2.9.2).

Variant calling followed the GATK workflow:

- (i) base recalibration with BaseRecalibrator, AnalyzeCovariates, and PrintReads using dbSNP138 (provided by NIH Biowulf);
- (ii) variant calling with HaplotypeCaller in "discovery" genotyping mode, generating gVCFs with a minimum Phred-scaled confidence threshold of 30.


Variants were filtered using hard thresholds: QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5, and ReadPosRankSum < −8.0. Additional filtering excluded variants overlapping repetitive elements⁵ (UCSC masked and simple repeats; https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/) and ENCODE blacklisted regions⁶ (https://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human/). Only heterozygous (0/1) or homozygous alternate (1/1) SNVs were retained. Further criteria included: read depth ≥10, exclusion of excessive read depth (d + 3√d,

where d = mean depth)⁷ (d+3 \sqrt{d} , d = average read depth), and allele frequency \geq 10%. Filtering was performed using BEDtools (version 2.26.0), BEDOPS (version 2.4.3) and VCFtools (version 0.1.17)⁸⁻¹⁰. SNVs within ±5 bp of indel borders were discarded as likely false positives. SNP positions were subsequently lifted over from hg19 to hg38.


mRNA sequencing (mRNA-seq) data analysis

Raw mRNA-seq data underwent QC with FastQC (v0.11.9). Reads were processed with Trimmomatic³ (version 0.36) and aligned to hg19 using STAR⁴ (version STAR 2.7.9a) in paired-end mode (150 bp). Gene-level counts were obtained using HTSeq¹¹ (version 0.9.1). Normalization and differential expression analysis were performed with the DESeq2 package¹² in R (https://www.R-project.org/)¹³. Confounding factors were removed using RUVSeq¹⁴. Pre-filtering retained only genes with ≥10 total reads. Visualization was performed with dplyr (https://CRAN.R-project.org/package=dplyr) and ggplot2¹⁵. Statistical testing employed a paired, two-sided Wilcoxon test. P-values were adjusted using the Benjamini–Hochberg method, with a false discovery rate threshold of pAdj ≤ 0.05.

Supplementary Figures

Supplementary figure 1. Sequence alignments from RNA-seq and WGS data of individuals harboring a SNP.

Supplementary figure 2. AlphaFold3-predicted models of the IL-2-mediated signaling complex. Shown as cartoon representations, the complexes containing (A) WT JAK3 and (B) the L1073F mutant are depicted. For clarity, the IL-2 signaling complex components (IL-2 and its receptor) and STAT5A are omitted.

Supplementary Table 1. JAK and STAT mutations identified in 30 study subjects of the Tyrolian cohort

Gene			gnor	mAD	All of Us		
	AA substitution	rsID	Allele Count	Allele frequency	Allele Count	Allele frequency	
JAK2	V617F	rs77375493	471	2.93E-04	278	5.67E-04	
IAKS	V722I	rs3213409	15743	9.75E-03	4480	9.13E-03	
JAK3	L1073F	rs200580168	533	3.31E-04	107	2.18E-04	
	A53T	rs55762744	14980	9.29E-03	3486	7.10E-03	
	V362F	rs2304256	446002	2.76E-01	116321	2.37E-01	
TYK2	G363S	rs2304255	113510	7.03E-02	27192	5.54E-02	
	I684S	rs12720356	10	7.97E-02	30076	6.13E-02	
	P1104A	rs34536443	59598	3.71E-02	13893	2.83E-02	
STATO	M594I	rs2066807	93983	5.82E-02	23543	4.80E-02	
STAT2	G825C	rs61754170	29650	1.84E-02	5846	1.19E-02	
STAT5A	V209A	rs2230123	6766	6766 4.19E-03		1.83E-02	

Supplementary Table 2. Potential clinical pathogenicity of JAK and STAT mutations.

			COSMIC	ClinVar	In silico	pathogenicity	score	Literatura Barranta d Bisasasa	
Gene	AA substitution	rsID	case #	Clinical significance	Alpha Missense	PolyPhen2	REVEL	Literature-Reported Disease Associations	
JAK2	V617F	rs77375493	>49,000	Likely pathogenic	0.33	0.93	0.88	Myeloproliferative neoplasms ^{16,17}	
JAK3	V722I	rs3213409	67	Benign	0.07	0.00	0.16	Acute Myelocytic Leukemia ^{18,19} Natural Killer cell lymphoma ²⁰ T cell lymphoma ²¹ Idiopathic erythrocytosis ²²	
	L1073F	rs200580168	3	Uncertain	0.29	0.98	0.48	Melanocytic Neoplasms ²³	
	A53T	rs55762744	0	Benign	0.16	0.92	0.46	Multiple sclerosis ²⁴ Autoimmunity ^{25,26}	
	V362F	rs2304256	31	Benign	0.08	0.02	0.05	Systemic sclerosis ²⁷ Systemic lupus erythematosus ²⁸⁻³⁰ Autoimmune rheumatic diseases ³¹ Psoriasis ³²	
T V4/0	G363S	rs2304255	2	Benign	0.08	0.00	0.03	Psoriasis ³³ Cancer metastases ³⁴ COVID-19 susceptibility ³⁵⁻³⁷	
TYK2	I684S	rs12720356	5	Benign	0.59	0.97	0.34	Psoriasis ^{32,38} Autoimmunity ^{25,39,40} Systemic sclerosis ²⁷ Rheumatoid arthritis ⁴¹ Systemic lupus erythematosus ⁴²	
	P1104A	rs34536443	3	Likely benign	0.83	0.97	0.59	Systemic sclerosis ²⁷ Autoimmunity ^{25,39,40,43,44} Rheumatoid arthritis ⁴¹ Tuberculosis ⁴⁵	
STAT2	M594I rs200		6	Benign	0.08	0.00	0.36	Cervical Cancer ⁴⁶ COVID-19 susceptibility ³⁵ Psoriasis ⁴⁷	
	G825C	rs61754170	1	Benign	0.09	0.01	0.01	Lymphoma ⁴⁸ Autoinflammatory diseases ⁴⁹	
STAT5A	V209A	rs2230123	2	Benign	0.08	0.11	0.00	Sickle Cell Anemia with Stroke ⁵⁰	

Supplementary Table 3. List of genes regulated through the JAK/STAT pathway at Day0 and Day1 after the vaccination in the cohort.

	JAK mutations								STAT mutations						
		JAK3 L1073F	AK3 L1073F JAK2 V617F JAK3 V722I JAK2 V617F JAK3 V722I no SNP							STAT2 M594I STAT2 M594I STAT5A V209 STAT2 M594I STAT2G825C no SNP					
				TYK2 A53T				1		TYK2 V362F	TYK2 V362F		TYK2 V362F	TYK2 V362F	
	Fold Change			TYK2 V362F	TYK2 V362F	TYK2 V362F		1	Fold Change		TYK2 G363S				
			TYK2 G363S					1		TYK2 I684S			TYK2 I684S		
				TYK2 P1104A	À					TYK2 P1104A					
	IFIT2	11.87	2.65	2.21	11.16	1.56	2.23		IFIT2	19.25	5.73	5.10	2.82	2.45	2.23
	IFIT3	11.13	2.49	2.62	7.27	1.77	2.43		IFIT3	12.03	5.17	6.48	2.84	2.49	2.43
	IL1R1	6.69	1.90	2.03	1.11	1.50	2.12		IL1R1	2.70	4.05	1.54	1.99	1.60	2.12
	IL1RAP	6.26	1.60	1.97	1.49	1.60	2.00		IL1RAP	4.12	3.43	1.88	1.84	1.35	2.00
	IFIT1	5.57	2.46	2.04	3.66	1.81	2.38		IFIT1	8.41	3.36	6.18	2.75	2.23	2.38
	STAT1	4.74	1.49	1.39	2.29	1.71	1.46		STAT1	3.19	2.67	5.13	1.69	2.08	1.46
	IFNAR1	3.50	1.54	1.67	1.92	1.10	1.40		IFNAR1	3.36	2.26	1.26	1.49	1.26	1.40
	IRF2	3.47	1.76	1.69	1.66	1.09	1.45		IRF2	2.66	2.13	2.08	1.57	1.50	1.45
	IL6R	3.39	1.74	1.57	1.10	1.04	1.32		IL6R	1.13	2.09	1.24	1.67	1.28	1.32
JAK/STAT	IRF1	3.29	1.41	1.95	4.06	1.13	1.45	JAK/STAT	IRF1	3.26	3.00	4.17	1.53	1.92	1.45
targets	IL1R2	3.08	1.69	2.62	1.21	1.53	1.75	targets	IL1R2	1.97	0.93	1.48	1.17	1.26	1.75
targets	STAT5B	2.98	1.52	1.46	1.63	1.04	1.54	targets	STAT5B	2.39	1.93	1.45	1.40	1.32	1.54
	IFI16	2.97	1.54	1.53	3.59	1.18	1.47		IFI16	4.66	1.95	2.35	1.75	1.73	1.47
	IL13RA1	2.70	1.67	1.51	1.53	1.58	1.43		IL13RA1	2.11	2.10	1.97	1.71	1.43	1.43
	IL1RN	2.69	1.88	1.20	2.00	0.97	1.38	-	IL1RN	3.49	2.06	1.99	1.53	1.47	1.38
	IFNAR2	2.67	1.36	1.23	1.77	1.09	1.31		IFNAR2	2.58	1.96	1.24	1.33	1.25	1.31
	IFNGR1	2.63	1.28	1.45	1.08	1.35	1.56		IFNGR1	1.38	1.50	1.52	1.49	1.20	1.56
	IL17RA	2.53	1.69	1.39	1.09	1.02	1.29		IL17RA	1.36	1.79	1.44	1.40	1.39	1.29
	IFNGR2	2.16	1.68	0.88	0.86	0.97	1.12		IFNGR2	1.02	1.55	1.32	1.38	1.25	1.12
	IL16	1.67	1.32	1.28	0.91	0.93	1.15		IL16	0.82	1.74	0.79	1.33	1.01	1.15
	IL4R	1.56	1.23	1.16	1.34	0.96	1.33		IL4R	1.57	1.70	1.09	0.98	1.11	1.33
	GBP1P1	4.85	1.68	1.07	3.02	1.33	1.36		GBP1P1	30.48	2.29	26.16	2.06	3.53	1.36
	C4BPA	8.03	1.61	1.75	3.31	1.18	2.03		C4BPA	17.26	2.61	4.61	2.58	2.17	2.03
	ERLIN1	4.11	1.30	1.62	6.55	1.55	1.51		ERLIN1	15.81	1.63	2.55	1.65	1.54	1.51
	HERC5	2.19	1.69	1.32	5.48	1.88	1.88		HERC5	13.62	2.01	5.90	2.03	1.91	1.88
	FCGR1B	10.11	1.72	1.93	3.95	1.26	1.89		FCGR1B	10.08	4.48	4.29	2.16	2.48	1.89
	CMPK2	2.51	1.60	1.16	5.66	1.64	1.83		CMPK2	9.53	1.89	6.75	1.97	2.03	1.83
	BATF2	8.10	2.02	1.48	18.97	3.07	1.40		BATF2	9.35	3.43	21.24	2.19	3.35	1.40
	вмх	9.32	2.34	1.89	1.86	1.68	1.90		BMX	9.34	5.70	2.11	1.91	2.07	1.90
	FCGR1A	5.48	1.80	1.06	5.35	1.50	1.41		FCGR1A	8.64	3.04	8.20	2.03	2.76	1.41
	IFIT1	5.57	2.46	2.04	3.66	1.81	2.38		IFIT1	8.41	3.36	6.18	2.75	2.23	2.38
	SERPING1	3.03	1.86	1.29	3.79	1.40	1.37		SERPING1	7.69	2.11	12.32	1.99	2.31	1.37
	CD59	2.57	1.48	1.26		1.02	1.47	4	CD59	7.35	1.69	2.34	1.62	1.44	1.47
enhancer	ZC3HAV1	2.05	1.36	1.23	4.47	1.32	1.42	enhancer	ZC3HAV1	5.88	1.42	2.34	1.59	1.61	1.42
Immune genes	MX1	1.93	1.60	1.36	3.43	1.41	1.61	immune genes	MX1	5.85	1.77	3.67	1.99	1.71	1.61
	PLEK	3.21	1.56	1.91	3.61	1.30	1.79		PLEK	5.75	2.40	2.88	1.51	1.69	1.79
	GBP2	4.91	1.74	1.66	2.79	1.38	1.63		GBP2	5.56	2.52	4.58	1.80	2.16	1.63
	OASL	2.91	1.80	1.47		1.36	1.71]	OASL	4.55	2.47	3.84	1.58	1.63	1.71
	MAFF	1.92	1.23	3.62		1.49	2.12	4	MAFF	4.39	1.70	5.06	1.34	1.96	2.12
	ICAM1	2.78	1.32	1.81	3.70	1.77	1.60		ICAM1	3.96	2.95	4.60	1.65	1.72	1.60
	RIPK2	2.12	1.21	1.26		1.55	1.47	-	RIPK2	3.86	1.69	2.91	1.35	1.65	1.47
	NMI	2.93	1.69	1.27	2.58	1.35	1.28		NMI	2.93	1.72	2.73	1.84	1.68	1.28
	CSNK1A1L	7.46	2.76	2.86	1.36	1.04	2.30		CSNK1A1L	2.91	4.20	1.48	1.92	1.42	2.30
	TRIB1	5.09	2.10	2.53	2.56	1.52	1.68		TRIB1	2.87	2.67	2.26	1.67	1.63	1.68
	NAMPT	9.07	1.78	2.14		1.60	2.54	4	NAMPT	2.76	3.61	2.46	1.83	1.80	2.54
	AP5B1	3.28	1.49	1.52	1.79	1.08	1.62		AP5B1	2.23	2.44	2.55	1.49	1.95	1.62
	BCL2A1	3.28	1.65	1.39	1.47	1.82	1.49		BCL2A1	1.88	1.60	2.73	1.37	1.81	1.49

Supplementary Table 4. Ratio of reads supporting the reference or mutant sequence at each JAK and STAT mutation site. Black: reference; Red: mutation.

			RNA-s	wgs				
		%			#ofread	%	#ofread	
Mutations	individual	data	G	T	# or read	G	T	# or read
		Data-1	21	79	744			deceased
	#9	Data-2	21	79	754			
	#9	Data-3	16	84	675			
JAK2-V617F		Data-4	15	85	823			
		Data-1	75	25	369	40	60	40
	#10	Data-2	75	25	331			
		Data-3	68	33	440			
Mutations	individual	data	С	Т	# of read	С	T	# of read
		Data-1	55	45	334	57	43	42
	#2	Data-2	53	47	612			
	#2	Data-3	53	46	515			
		Data-4	56	44	203			
JAK3-V722I	#26	Data-1	47	53	474	55	45	49
		Data-2	46	54	543			
		Data-3	48	52	340			
		Data-4	52	48	243			
		Data-5	51	49	273			
Mutations	individual	data	G	Α	# of read	G	A	# of read
	#13	Data-1	52	48	61	47	53	53
1410 140705		Data-2	40	60	65			
JAK3-L1073F		Data-3	41	59	106			
		Data-4	47	53	64			
Mutations	individual	data	С	G	# of read	С	G	# of read
		Data-1	53	47	996	40	60	42
	#4	Data-2	51	48	3495			
	#4	Data-3	50	50	434			
		Data-4	51	49	1136			
		Data-1	53	47	971	58	42	45
CTATO MEGA	#15	Data-2	49	51	2041			
STAT2-M594I	#15	Data-3	50	50	2374			
		Data-4	50	50	1196			
		Data-1	51	49	702	56	41	41
		Data-2	52	48	1193			
	#16	Data-3	47	53	2948			
	1 1	Data-4	54	46	602			

			RNA-s	wgs				
Mutations			%		#of read		# of read	
	individual	data	С	Α		С	A	# or read
		Data-1	48	52	1835	5	1 49	47
		Data-2	51	49	1728			
STAT2-G825C	#18	Data-3	48	52	2056			
STATZ-G825C	#10	Data-4	48	52	3611			
		Data-5	49	51	2803			
		Data-6	50	50	1000			
Mutations	individual	data	С	T	# of read	С	T	# of read
		Data-1	52	48	295	5	4 46	28
TYK2-A53T	#2	Data-2	50	50	510			
1 T KZ-A531	#2	Data-3	48	52	456			
		Data-4	43	56	186			
Mutations	individual	data	С	T	#of read	С	Т	# of read
	#10	Data-1	44	56	415	3	5 65	51
		Data-2	48	52	404			
		Data-3	44	56	296			
TYK2-G363S	#16	Data-1	52	48	415	5	3 47	45
		Data-2	49	51	749			
		Data-3	45	55	403			
		Data-4	57	43	316			
Mutations	individual	data	Α	С	#ofread	Α	С	#of read
	#4	Data-1	53	47	391	3	9 61	41
		Data-2	58	42	272			
		Data-3	55	45	219			
TYK2-1684S		Data-4	48	52	277			
11K2-16643		Data-1	46	54	334	4	6 54	24
	#15	Data-2	51	49	356			
	#15	Data-3	51	49	411			
		Data-4	46	54	287			
Mutations	individual	data	G	C	# of read	G	С	# of read
		Data-1	49	51	1566	5	1 49	43
	#2	Data-2	50	50	1537			
	#2	Data-3	46	54	1158			
TYK2-P1104A		Data-4	52	48	561			
11KZ-P11U4A		Data-1	50	50	1501	4:	2 58	52
	#4	Data-2	48	52	1032			
	#4	Data-3	48	52	922			
		Data-4	53	47	1169			

References

- 1. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754-60 (2009).
- 2. Broad Institute. Picard. (2016).
- 3. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114-20 (2014).
- 4. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).
- 5. Casper, J. *et al.* The UCSC Genome Browser database: 2018 update. *Nucleic Acids Res* **46**, D762-D769 (2018).
- 6. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57-74 (2012).
- 7. Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. *Bioinformatics* **30**, 2843-51 (2014).
- 8. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841-2 (2010).
- 9. Neph, S. *et al.* BEDOPS: high-performance genomic feature operations. *Bioinformatics* **28**, 1919-20 (2012).
- 10. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156-8 (2011).
- 11. Anders, S., Pyl, P.T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics* **31**, 166-9 (2015).
- 12. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
- 13. Zhao, Y. et al. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository. J Transl Med 19, 269 (2021).
- 14. Risso, D., Ngai, J., Speed, T.P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. *Nat Biotechnol* **32**, 896-902 (2014).

- 15. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer (2009). viii, p.212
- 16. Vainchenker, W. & Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. *Blood* **129**, 667-679 (2017).
- 17. Torres, D.G. *et al.* Molecular landscape of the JAK2 gene in chronic myeloproliferative neoplasm patients from the state of Amazonas, Brazil. *Biomed Rep* **19**, 98 (2023).
- 18. Riera, L. *et al.* Description of a novel Janus kinase 3 P132A mutation in acute megakaryoblastic leukemia and demonstration of previously reported Janus kinase 3 mutations in normal subjects. *Leuk Lymphoma* **52**, 1742-50 (2011).
- 19. Yin, C., Sandoval, C. & Baeg, G.H. Identification of mutant alleles of JAK3 in pediatric patients with acute lymphoblastic leukemia. *Leuk Lymphoma* **56**, 1502-6 (2015).
- 20. Bouchekioua, A. *et al.* JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. *Leukemia* **28**, 338-48 (2014).
- 21. Ehrentraut, S. *et al.* Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma. *Oncotarget* **7**, 34201-16 (2016).
- 22. Elli, E.M. *et al.* Idiopathic erythrocytosis: a germline disease? *Clin Exp Med* **24**, 11 (2024).
- 23. Zhao, J. et al. Benign and Intermediate-grade Melanocytic Tumors With BRAF Mutations and Spitzoid Morphology: A Subset of Melanocytic Neoplasms Distinct From Melanoma. Am J Surg Pathol 46, 476-485 (2022).
- 24. Dyment, D.A. *et al.* Exome sequencing identifies a novel multiple sclerosis susceptibility variant in the TYK2 gene. *Neurology* **79**, 406-11 (2012).
- 25. Diogo, D. *et al.* TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. *PLoS One* **10**, e0122271 (2015).

- 26. Ma, Y., Shi, N., Li, M., Chen, F. & Niu, H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. *Genomics Proteomics Bioinformatics* **13**, 242-9 (2015).
- 27. Lopez-Isac, E. *et al.* Influence of TYK2 in systemic sclerosis susceptibility: a new locus in the IL-12 pathway. *Ann Rheum Dis* **75**, 1521-6 (2016).
- 28. Kyogoku, C. *et al.* Lack of association between tyrosine kinase 2 (TYK2) gene polymorphisms and susceptibility to SLE in a Japanese population. *Mod Rheumatol* **19**, 401-6 (2009).
- 29. Tang, L. *et al.* Genetic association and interaction between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han Chinese population. *Inflamm Res* **64**, 817-24 (2015).
- Wang, Y. et al. COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genet 18, e1010253 (2022).
- 31. Lee, Y.H. & Bae, S.C. Association between TYK2 polymorphisms and susceptibility to autoimmune rheumatic diseases: a meta-analysis. *Lupus* **25**, 1307-14 (2016).
- 32. Dand, N. *et al.* Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type I IFN signalling. *Hum Mol Genet* **26**, 4301-4313 (2017).
- 33. Morelli, M. *et al.* HLA-Cw6 and other HLA-C alleles, as well as MICB-DT, DDX58, and TYK2 genetic variants associate with optimal response to anti-IL-17A treatment in patients with psoriasis. *Expert Opin Biol Ther* **21**, 259-270 (2021).
- 34. Borcherding, D.C., He, K., Amin, N.V. & Hirbe, A.C. TYK2 in Cancer Metastases: Genomic and Proteomic Discovery. *Cancers (Basel)* **13**(2021).
- 35. El Houdi, M. *et al.* Association study of the JAK/STAT signaling pathway with susceptibility to COVID-19 in moroccan patient and in-silico analysis of rare variants. *Virus Res* **351**, 199509 (2025).
- 36. Nhung, V.P. *et al.* Host Genetic Risk Factors Associated with COVID-19 Susceptibility and Severity in Vietnamese. *Genes (Basel)* **13**(2022).

- 37. Zabihi Rizi, F. *et al.* TYK2 single-nucleotide variants associated with the severity of COVID-19 disease. *Arch Virol* **168**, 119 (2023).
- 38. Canabrava, P.B.E. *et al.* Evaluation of Tyrosine Kinase-2 (TYK2) signaling pathway gene expression and the presence of the single-nucleotide polymorphism rs12720356 in the peripheral blood of patients with severe psoriasis and loss of systemic treatment response. *An Bras Dermatol* **100**, 501165 (2025).
- 39. Pellenz, F.M. *et al.* Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. *Genet Mol Biol* **44**, e20200425 (2021).
- 40. Tao, J.H. *et al.* Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. *Mol Biol Rep* **38**, 4663-72 (2011).
- 41. Saevarsdottir, S. *et al.* Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. *Ann Rheum Dis* **81**, 1085-1095 (2022).
- 42. Contreras-Cubas, C. *et al.* Catalytically Impaired TYK2 Variants are Protective Against Childhood- and Adult-Onset Systemic Lupus Erythematosus in Mexicans. *Sci Rep* **9**, 12165 (2019).
- 43. Dai, B. *et al.* TYK2 rs34536443 (P1104A) Variant Suppresses ICAM1-Mediated Inflammation: Insights From Mendelian Randomization and Functional Analyses. *Psoriasis (Auckl)* **15**, 361-372 (2025).
- 44. Yuan, S. *et al.* Mendelian randomization and clinical trial evidence supports TYK2 inhibition as a therapeutic target for autoimmune diseases. *EBioMedicine* **89**, 104488 (2023).
- 45. Kerner, G. *et al.* Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. *Proc Natl Acad Sci U S A* **116**, 10430-10434 (2019).
- 46. Yuan, Y. *et al.* Association Study of Single-Nucleotide Polymorphisms of STAT2/STAT3/IFN-gamma Genes in Cervical Cancer in Southern Chinese Han Women. *Asian Pac J Cancer Prev* **16**, 3117-20 (2015).

- 47. Kubota, N. & Suyama, M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. *BMC Med Genomics* **13**, 8 (2020).
- 48. Berg, V. *et al.* Common origin and somatic mutation patterns of composite lymphomas and leukemias. *Leukemia* **39**, 1960-1971 (2025).
- 49. Alexeeva, E. *et al.* Safety and efficacy of canakinumab treatment for undifferentiated autoinflammatory diseases: the data of a retrospective cohort two-centered study. *Front Med (Lausanne)* **10**, 1257045 (2023).
- 50. Brewin, J.N. *et al.* Genetic Analysis of Patients With Sickle Cell Anemia and Stroke Before 4 Years of Age Suggest an Important Role for Apoliprotein E. *Circ Genom Precis Med* **13**, 531-540 (2020).