

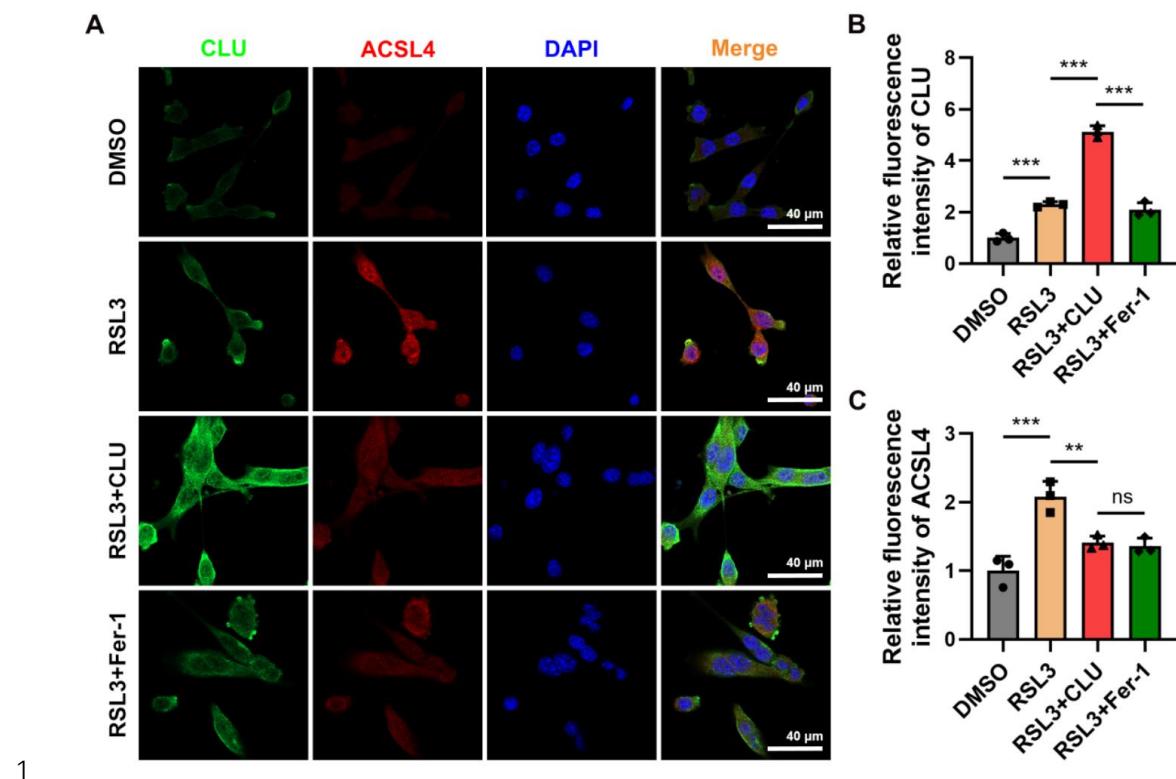
1 **Supplemental materials**

2

3 **Clusterin Inhibits Neuronal Ferroptosis via the PI3K-AKT-**

4 **mTOR-SREBP1 Axis to Promote Functional Recovery**

5


6 **Yao et al.**

7

8

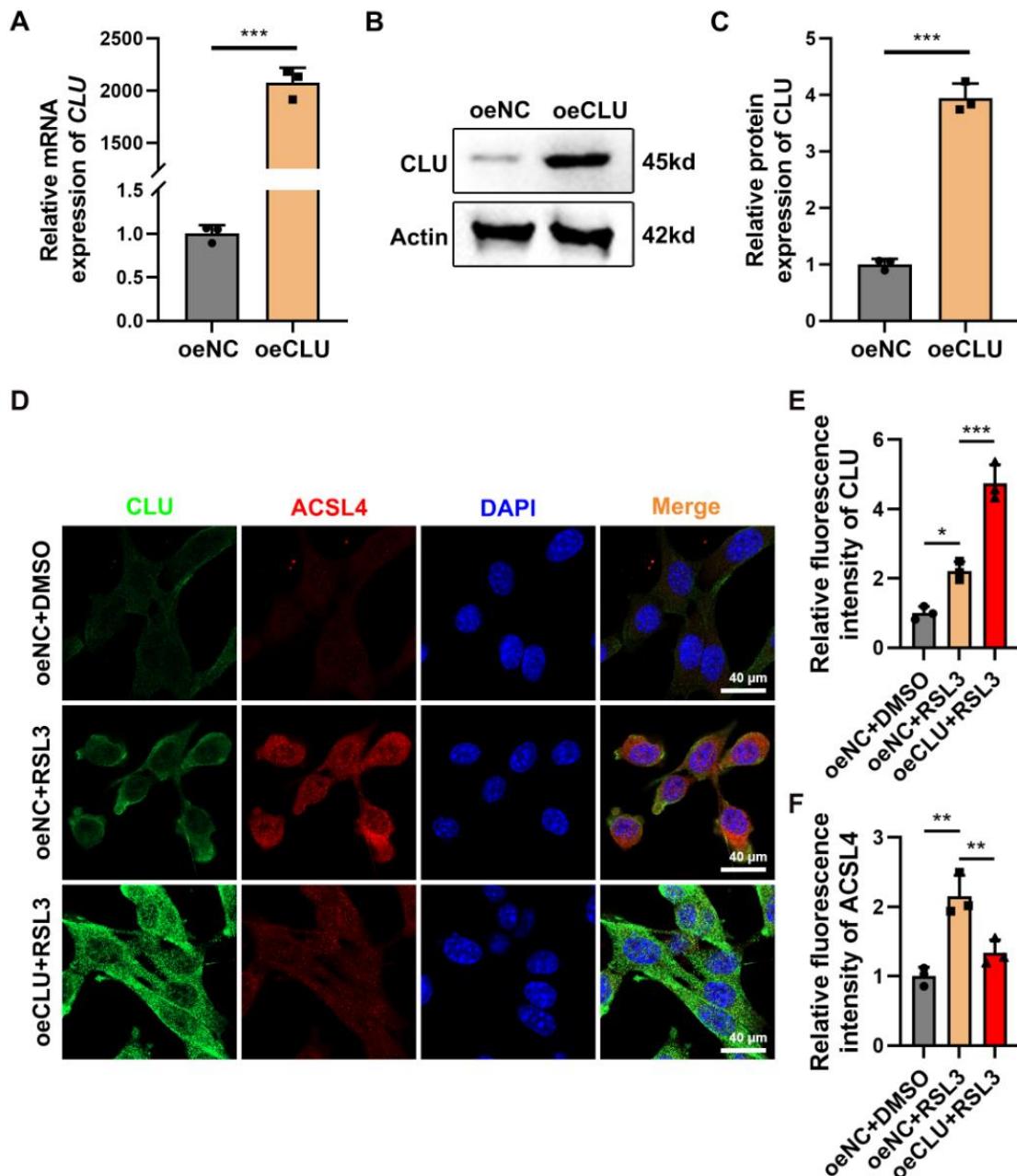
9 **Figures and Legends**

10

Supplementary Figure 1 | Exogenous addition of CLU protein reduced the expression of ACSL4, a marker of neuronal ferroptosis.

(A) Representative immunofluorescent staining images showing co-localization of CLU and ACSL4 in HT22 cells treated with: DMSO, RSL3 alone, RSL3 plus recombinant CLU protein, or RSL3 plus ferroptosis inhibitor Fer-1 (ferroptosis inhibitor). CLU is labeled in green, and ACSL4 in red. HT22 cells were stimulated with 5 μ M RSL3 to induce ferroptosis. Scale bar, 40 μ m.

(B) Quantification of fluorescence intensity of CLU in (A). (n=3 biological repeats for each group; One-way ANOVA with Tukey's multiple comparisons test).


(C) Quantification of fluorescence intensity of ACSL4 in (A). (n=3 biological repeats for each group; One-way ANOVA with Tukey's multiple comparisons test).

1 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; **p

2 < 0.01 , ***p < 0.001 , ns, not significant, p > 0.05 .

3 See also **Figure 2**.

4

1

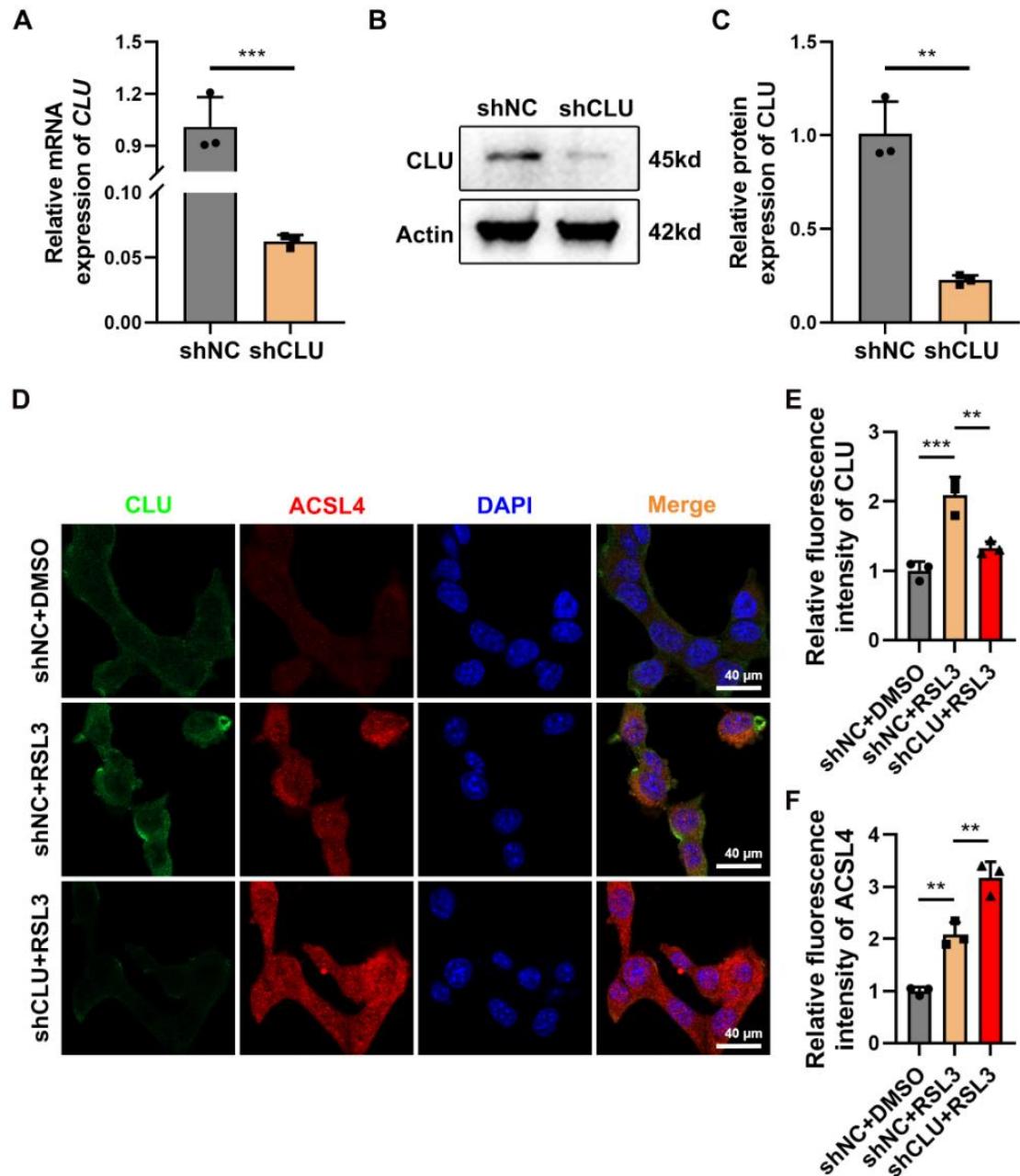
2 **Supplementary Figure 2 | Efficiency validation of endogenous CLU**
 3 overexpression and its downregulation of the neuronal ferroptosis
 4 marker ACSL4.

5 (A) qPCR analysis of relative mRNA expression levels of the CLU gene in the
 6 oeNC and oeCLU group. (n = 3 biological repeats for each group; Unpaired t
 7 test).

8 (B-C) Western blot analysis and quantification of relative CLU protein

1 expression level in the oeNC and oeCLU group. (n = 3 biological repeats for
2 each group; Unpaired t test).

3 **(D)** Representative immunofluorescent staining images showing co-localization
4 of CLU and ACSL4 in HT22 cells with different treatment: oeNC + DMSO, oeNC
5 + RSL3, and oeCLU + RSL3. Scale bar, 40 μ m.


6 **(E)** Quantification of fluorescence intensity of CLU in **(D)**. (n=3 biological
7 repeats for each group; One-way ANOVA with Tukey's multiple comparisons
8 test).

9 **(F)** Quantification of fluorescence intensity of ACSL4 in **(D)**. (n=3 biological
10 repeats for each group; One-way ANOVA with Tukey's multiple comparisons
11 test).

12 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; *p
13 <0.05, **p < 0.01, ***p < 0.001.

14 See also **Figure 3**.

15

1

2 **Supplementary Figure 3 | Efficiency validation of CLU knockdown and its**
 3 **upregulation of the neuronal ferroptosis marker ACSL4.**

4 (A) qPCR analysis of relative mRNA expression levels of the CLU gene in the
 5 shNC and shCLU group. (n = 3 biological repeats for each group; Unpaired t
 6 test).

7 (B-C) Western blot analysis and quantification of relative CLU protein

1 expression level in the shNC and shCLU group. (n = 3 biological repeats for
2 each group; Unpaired t test).

3 **(D)** Representative immunofluorescent staining images showing co-localization
4 of CLU and ACSL4 in HT22 cells with different treatment: shNC + DMSO, shNC
5 + RSL3, and shCLU + RSL3. Scale bar, 40 μ m.


6 **(E)** Quantification of fluorescence intensity of CLU in **(D)**. (n=3 biological
7 repeats for each group; One-way ANOVA with Tukey's multiple comparisons
8 test).

9 **(F)** Quantification of fluorescence intensity of ACSL4 in **(D)**. (n=3 biological
10 repeats for each group; One-way ANOVA with Tukey's multiple comparisons
11 test).

12 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; **p
13 < 0.01, ***p < 0.001.

14 See also **Figure 4**.

15

1

2 **Supplementary Figure 4 | CLU reduced the expression of ACSL4 by**

3 **activating the PI3K-AKT-mTOR pathway in vitro.**

4 **(A)** Representative immunofluorescent staining images showing co-localization

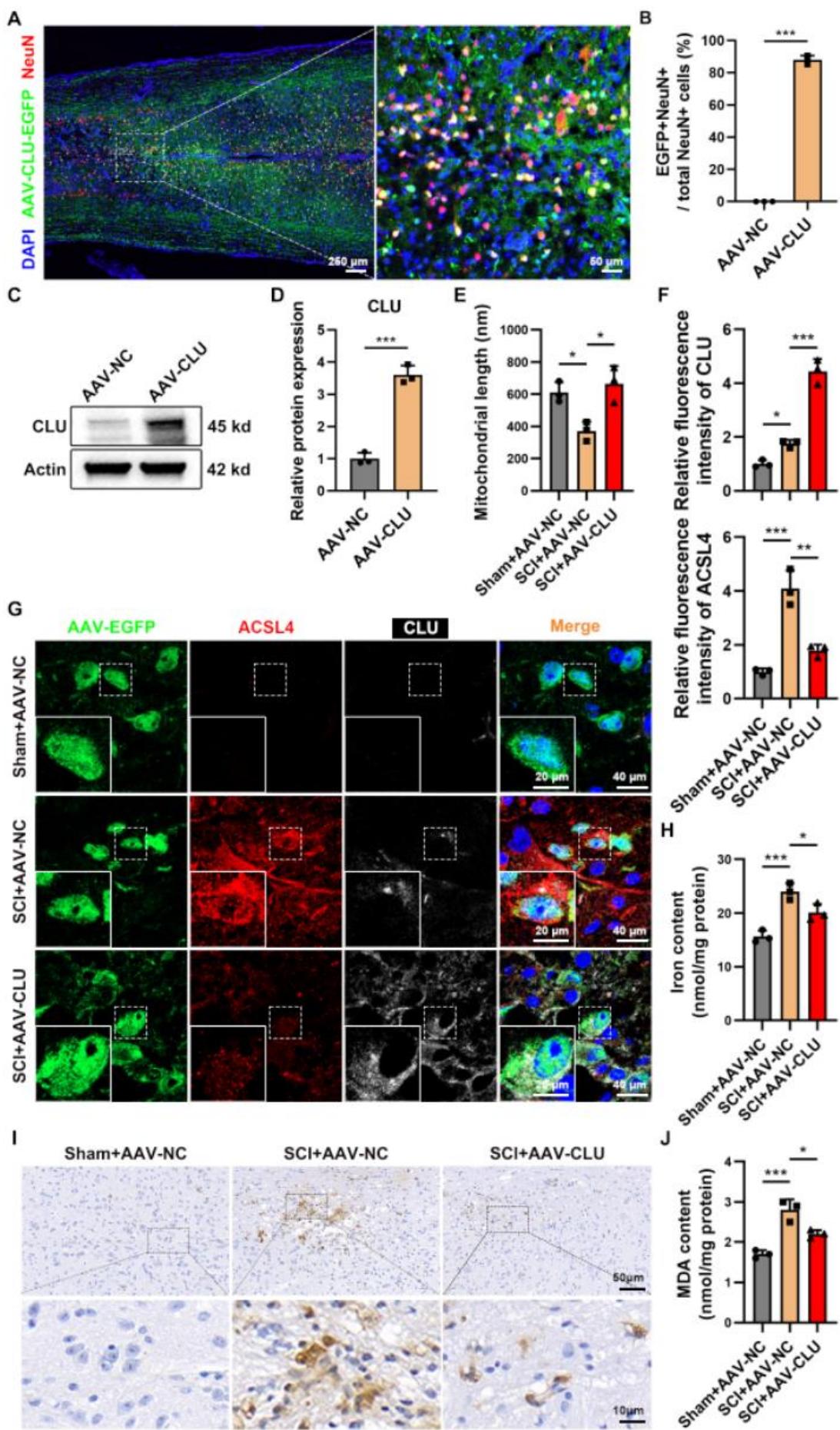
5 of CLU and ACSL4 in HT22 with different treatment groups: oeNC (empty

6 vector), oeNC+RSL3 (ferroptosis inducer), oeCLU (CLU overexpression)

7 +RSL3, oeCLU+RSL3+RAPA (mTOR inhibitor). Scale bar, 40 μ m.

8 **(B)** Quantification of fluorescence intensity of CLU in **(A)**. (n=3 biological

9 repeats for each group; One-way ANOVA with Tukey's multiple comparisons


10 test).

1 **(C)** Quantification of fluorescence intensity of ACSL4 in **(A)**. (n=3 biological
2 repeats for each group; One-way ANOVA with Tukey's multiple comparisons
3 test).

4 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; **p
5 < 0.01 , ***p < 0.001 , ns, not significant, p > 0.05 .

6 See also **Figure 5**.

7

1 **Supplementary Figure 5 | In vivo validation of CLU overexpression**
2 **efficiency and ferroptosis-related phenotypes.**

3 **(A)** Representative immunofluorescent staining images of healthy control spinal
4 cord tissue showing co-staining of AAV-CLU-EGFP (green, marking CLU
5 overexpression) and NeuN (red, neuronal marker), demonstrating neuronal
6 CLU overexpression in vivo. Scale bar, 250 μ m for original and 50 μ m for
7 enlarged pictures.

8 **(B)** Quantification of the proportion of EGFP $^+$ NeuN $^+$ cells in total NeuN $^+$ cells of
9 spinal cord tissue in **(A)**. (n = 3 biological repeats for each group; Unpaired t
10 test).

11 **(C-D)** Western blot analysis and quantification of relative CLU protein
12 expression level in the spinal cord tissues of mice from AAV-NC and AAV-CLU
13 group. (n = 3 biological repeats for each group; Unpaired t test).

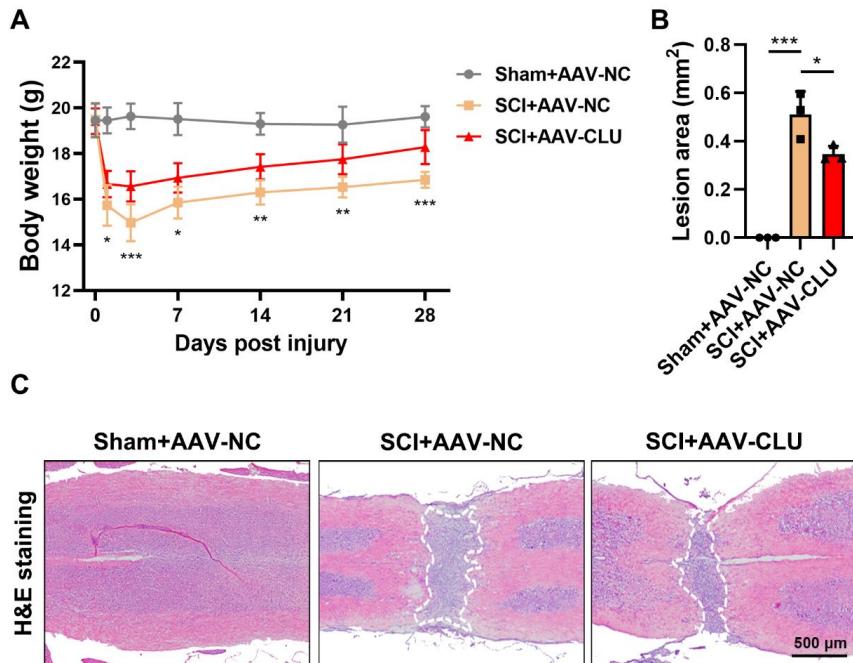
14 **(E)** Quantification of the average mitochondrial length (nanometer, nm) in
15 **Figure 6E**. (n=3 biological repeats for each group; One-way ANOVA with
16 Tukey's multiple comparisons test).

17 **(F)** Quantification of fluorescence intensity of CLU and ACSL4 in **(G)**. (n=3
18 biological repeats for each group; One-way ANOVA with Tukey's multiple
19 comparisons test).

20 **(G)** Representative immunofluorescent staining images of AAV-EGFP (green,
21 marking neurons), CLU (white) and ACSL4 (red, ferroptosis marker) in the
22 spinal cord lesions at 7 dpi of mice from Sham+AAV-NC, SCI+AAV-NC and

1 SCI+AAV-CLU group. Scale bar, 40 μ m for original and 20 μ m for enlarged
2 pictures.

3 **(H)** Quantification of intracellular total iron ion levels in the spinal cord tissues
4 of mice from Sham+AAV-NC, SCI+AAV-NC and SCI+AAV-CLU group. (n=3
5 biological repeats for each group; One-way ANOVA with Tukey's multiple
6 comparisons test).


7 **(I)** Representative images of Prussian blue staining combined with DAB
8 enhancement in the spinal cord lesions at 7 dpi of mice from Sham+AAV-NC,
9 SCI+AAV-NC and SCI+AAV-CLU group. Scale bar, 50 μ m for original and 10
10 μ m for enlarged pictures.

11 **(J)** Quantification of intracellular Malondialdehyde (MDA) levels in the spinal
12 cord tissues of mice from Sham+AAV-NC, SCI+AAV-NC and SCI+AAV-CLU
13 group. (n=3 biological repeats for each group; One-way ANOVA with Tukey's
14 multiple comparisons test).

15 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; *p
16 <0.05, **p < 0.01, ***p < 0.001.

17 See also **Figure 6**.

18

1 **Supplementary Figure 6 | Overexpression of CLU in vivo reduces lesion**
 2 **area after spinal cord injury.**

3 **(A)** Measurement of body weight on day 0, 1, 3, 7, 14, 21, and 28 post injury
 4 (dpi) in mice from Sham+AAV-NC, SCI+AAV-NC and SCI+AAV-CLU group. (n
 5 = 6 biological repeats for each group; Two-way ANOVA with Tukey's multiple
 6 comparisons test).

7 **(B-C)** Representative images of H&E staining and quantification of lesion area
 8 at 28 dpi of mice from Sham+AAV-NC, SCI+AAV-NC, and SCI+AAV-CLU group.

9 Scale bar, 500 μ m. (n=3 biological repeats for each group; One-way ANOVA
 10 with Tukey's multiple comparisons test).

11 Two-sided comparison; All data are mean \pm SD; Error bars represent SDs; *p
 12 <0.05, **p < 0.01, ***p < 0.001.

13 See also **Figure 7**.

1 **Supplementary Table 1 | Primer used during PCR. Related to Experimental**
2 **Procedures.**

Gene	Sequences (5' to 3')
<i>CLU</i>	Forward: 5'-AGCAGGAGGTCTCTGACAATG-3' Reverse: 5'- GGCTTCCTCTAAACTGTTGAGC-3'
<i>Actin</i>	Forward: 5'- AAATCGTGCCTGACATCAAAGA-3' Reverse: 5'- GCCATCTCCTGCTCGAAGTC-3'
<i>GPX4</i>	Forward: 5'- CCGTCTGAGCCGCTTACTTA-3' Reverse: 5'- GTGACGATGCACACGAAACC-3'
<i>xCT</i>	Forward: 5'- AATACGGAGCCTTCCACGAG-3' Reverse: 5'- CTCCAGGGGCAGTCAGTTAG-3'
<i>ACSL4</i>	Forward: 5'- GCACCTTCGACTCAGATCACA-3' Reverse: 5'- GAAGCCAGCAATAAGTACACAGA-3'

3

1 **Supplementary Table 2 | Primary and secondary antibodies.**

Product	Catalogue Number	Supplier
Primary antibody:		
WB:		
Anti-ACSL4	38493	Cell Signaling Technology
Anti-Clusterin	sc-166907	Santa Cruz
Anti-GPX4	ab125066	Abcam
Anti-xCT	ab307601	Abcam
Anti-4HNE	ab46545	Abcam
Anti-PI3K	4249	Cell Signaling Technology
Anti-p-PI3K	4228	Cell Signaling Technology
Anti-AKT	4691	Cell Signaling Technology
Anti-p-AKT	4060	Cell Signaling Technology
Anti-mTOR	2972	Cell Signaling Technology
Anti-p-mTOR	2971	Cell Signaling Technology
Anti-SREBP-1	sc-13551	Santa Cruz
Anti-SCD1	sc-515844	Santa Cruz
Anti-Actin	AC026	Abclonal
IF:		
Anti-ACSL4	ab155282	Abcam
Anti-CLU	ab79280	Abcam
Anti-CLU	AF2747	R&D
Anti-GFAP	ab53554	Abcam
Anti-NeuN	ab104224	Abcam
Anti-NeuN	ab177487	Abcam
Secondary antibody:		
WB:		
Anti-mouse IgG, HRP-linked Antibody	7076	Cell Signaling Technology
Anti-rabbit IgG, HRP-linked Antibody	7074	Cell Signaling Technology
IF:		
Donkey Anti-Mouse IgG H&L (Alexa Fluor® 488)	ab150105	Abcam
Donkey Anti-Mouse IgG H&L (Alexa Fluor® 555)	ab150106	Abcam
Donkey Anti-Rabbit IgG H&L (Alexa Fluor® 555)	ab150074	Abcam
Donkey Anti-Mouse IgG H&L (Alexa Fluor® 647)	ab150107	Abcam
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 647)	ab150079	Abcam
Donkey Anti-Goat IgG H&L (Alexa Fluor® 647)	ab150131	Abcam

1 **Supplementary Table 3 | Key resource table.**

Product	Catalogue Number	Supplier
Chemicals, peptides, and recombinant proteins		
DMSO	D2605	Sigma-Aldrich
Triton X-100	1139ML100	Biofroxx
Trizol reagent	T9424	Sigma-aldrich
RIPA Lysis Buffer	P0013B	Beyotime
Mounting Medium with DAPI	ab104139	Abcam
Hoechst 33342	C1029	Beyotime
Isoflurane	R510-22	RWD
Tribromethanol	Sigma-Aldrich	Cat#: T48402
FBS	10099-141	Invitrogen
PBS	10010023	Gibco
DMEM	C11995500BT	Gibco
TRYPSIN 0.25% EDTA	25200072	Invitrogen
Penicillin-Streptomycin Solution	EH80010	eLGBio
Bovine serum albumin	A34787	Invitrogen
Fer-1	HY-100579	MCE
Rapamycin	HY-10219	MCE
BODIPY 581/591 C11	C1022	Beyotime
FerroOrange	HY-D1913	MCE
RSL3	HY-100218A	MCE
Recombinant Mouse Clusterin Protein	50485-M08H	Sino Biological
Critical commercial assays		
StarScript II First-strand cDNA Synthesis Kit-II	A214	GenStar
2× RealStar Fast SYBR qPCR Mix	A301	GenStar
BCA Protein Assay Kit	23227	Thermo Fisher Scientific
SDS-PAGE Gel Preparation kit	P0012A	Beyotime
Cell Counting Kit-8	GK10001	GLPBIO
MDA Assay Kit	S0131S	Beyotime
Iron Content Colorimetric Assay Kit	E1042	Applygen
DHE (Dihydroethidium) Assay Kit	ab236206	Abcam
H&E Staining Kit	G1005	Servicebio
Nissl Staining Kit	G1036	Servicebio
Prussian blue Staining Kit	G1029	Servicebio
Experimental models: Organisms/strains		
Ht22	CL-0697	Procell
Software and algorithms		
ZEN (v3.1)	http://www.zeiss.com.cn/	Zeiss

GraphPad Prism (v10)	https://www.graphpad-prism.cn/	Graphpad
Adobe Photoshop (v2024)	N/A	Adobe
ImageJ (v1.54g)	https://imagej.net/ij/	NIH
R (v 4.4.0)	https://www.r-project.org	The R Foundation
Seurat (v5.1.0)	https://satijalab.org/seurat/index.html	N/A

1 **Supplementary Table 4 | Target sequence of shRNAs.**

Name	Sequences (5' to 3')
shNC	CCTAAGGTTAACGTCGCCCTCG
shCLU	GCAGGAGGTCTCTGACAAT

2