

1 **For the submission:**

2

3

4 **FOXO3 upregulates and activates GSDME to trigger myeloma cell pyroptosis**

5

6 Yaner Wang^{1,2,#}, Yali Wang^{1,3,#}, Yaoli Cui^{1,#}, Yuanming He¹, Ye Yang⁴, Wen Zhou⁵,
7 Longlong Liu¹, Hua Wang⁶, Mo Liu⁷, Yongqiang Wei⁸, Zhenqian Huang¹, Xiaolei Wei⁸,
8 Xinliang Mao^{1,2,4*}

9

10 ¹ Department of Hematology, The Key Laboratory of Advanced Interdisciplinary
11 Studies, The First Affiliated Hospital of Guangzhou Medical University; Guangdong
12 Provincial Key Laboratory of Protein Modification and Degradation, School of Basic
13 Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China

14 ² Institute of Clinical Pharmacology, Science and Technology Innovation Center,
15 Guangzhou University of Chinese Medicine, Guangzhou, 510405, China

16 ³ Department of Clinical Pharmacology, College of Pharmaceutical Sciences,
17 Guangzhou Medical University, Guangzhou 511436, P. R. China

18 ⁴ School of Medicine & Holistic Integrative Medicine, Nanjing University of
19 Traditional Medicine, Nanjing 210023, China

20 ⁵ Cancer Institute, Central China University, Changsha, 410078, P. R. China

21 ⁶ Department of Hematology, Southern Medical University, Guangzhou, 510515, P. R.
22 China

23 ⁷ State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical
24 Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060,
25 China

26 ⁸Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 511436,

27 P. R. China

28

29 **Supplemental Table S1. Specific primers for FOXO3 cloning**

Primers for FOXO3 cloning	
Forward	5'-TCTAGAATGGACTACAAGGATGACGA-3'
Reverse	5'-GCGGCCGCTCAGCCTGGCACCCAGCTCT-3'
Specific primers the construction of Tet-On FOXO3	
Forward	5'-CCTACCCTCGTAAAGAATTGCCACCATGGCAGAGGCACCG GCTTCCCCG-3'
Reverse	5'-AGGGGAGGTGGTCTGGATCCTCACTTGTCACTCGTCATCCTTG TAATC-3'

30

31 **Supplemental Table S2. Specific primers for RT-PCR for FOXO3, BAX, BCL2,
32 BCL2A1, BCL2L1, BNIP3, BNIP3L, BNIPL, MCL1 and GAPDH**

Primers for FOXO3	
Forward	5'- GCGTTGCGTGCCCTACTT -3'
Reverse	5'- CACTGACTGTGCTGGCGTTA-3'
Primers for GSDME	
Forward	5'- CCTCACCCCTGGCGATGT -3'
Reverse	5'- GGTCTGGATGCCACGAT -3'
Primers for GSDMD	
Forward	5'- GACAACGTGTACGTGGTGACTG -3'
Reverse	5'- TGGAAGGTCCCTCTGCTTCTTAT -3'
Primers for BAX	
Forward	5'- CCCGAGAGGTCTTTTCCGAG-3'
Reverse	5'- CCAGCCCATGATGGTTCTGAT-3'
Primers for BCL2	
Forward	5'- GGTGGGGTCATGTGTGTGG-3'
Reverse	5'- CGGTTCAGGTACTCAGTCATCC-3'
Primers for BCL2A1	
Forward	5'-TACAGGCTGGCTCAGGACTAT -3'
Reverse	5'-CGAACATTTGTAGCACTCTG-3'
Primers for BCL2L1	
Forward	5'-GAGCTGGTGGTTGACTTTCTC-3'
Reverse	5'-TCCATCTCCGATTCACTCCCT-3'

Primers for BNIP3	
Forward	5'-CAGGGCTCCTGGGTAGAACT -3'
Reverse	5'-CTACTCCGTCCAGACTCATGC-3'
Primers for BNIP3L	
Forward	5'-ATGTCGTCCCACCTAGTCGAG-3'
Reverse	5'-TGAGGATGGTACGTGTTCCAG-3'
Primers for BNIPL	
Forward	5'-GAGTCTGACTAAGGGGCCTG-3'
Reverse	5'-CTCCGAGTCTGAAGGTGTCT-3'
Primers for MCL1	
Forward	5'- GTAATAACACCAGTACGGACGG-3'
Reverse	5'- CCACAAACCCATCCTTGGAAAG-3'
Primers for GAPDH	
Forward	5'- GGAAGATGGTGTGGATT -3'
Reverse	5'- AACGGATTGGTGTATTG -3'

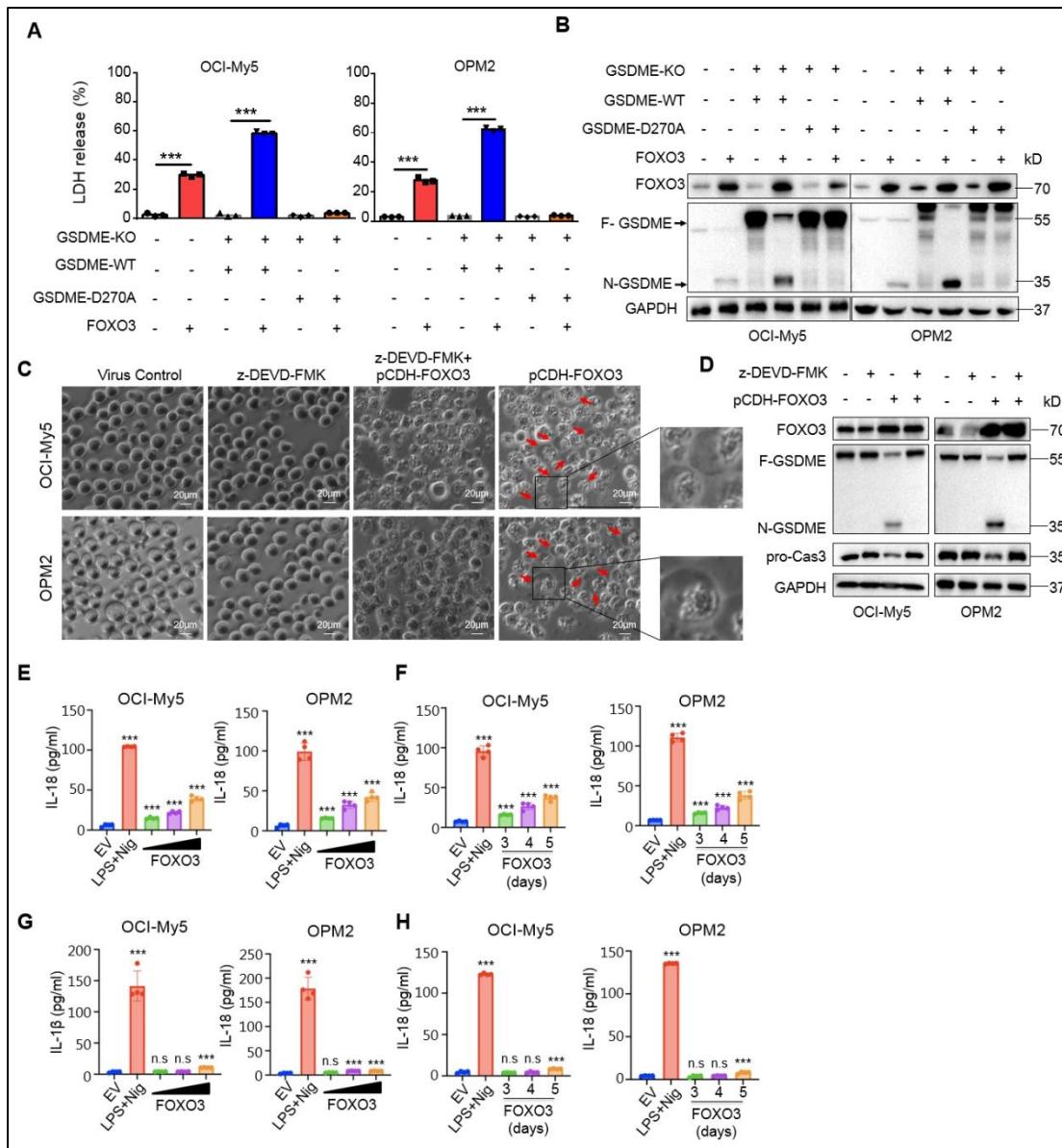
33

34 **Supplemental Table S3: Primers for qRT-PCR of FOXO3, GSDME, and**
35 **GAPDH**

Primers for FOXO3 (5'-3')	
Forward	5'-CGGACAAACGGCTCACTCT-3'
Reverse	5'-GGACCCGCATGAATCGACTAT-3'
Primers for GSDME (5'-3')	
Forward	5-ACATGCAGGTGAGGAGAAGT-3'
Reverse	5'-TCAATGACACCGTAGGCAATG-3'
Primers for GAPDH (5'-3')	
Forward	5'-GGAGCGAGATCCCTCCAAAAT-3'
Reverse	5'-GGCTGTTGTCATACTTCTCATGG-3'

36

37 **Supplemental Table S4: Primers for knockdown of FOXO3, BNIPL, and Bcl-xL**
38


Specific knockdown sequence for FOXO3	
shFOXO3#1	5'-CCTACCCTCGTAAAGAATTGCCACCATGGCAGAGGCA CCGGCTTCCCCG-3'
shFOXO3#2	5'-CGCTCGAAGTGGAGCTGGACCTTCAAGAGAGGTCCAG CTCCACTTCGAGCG

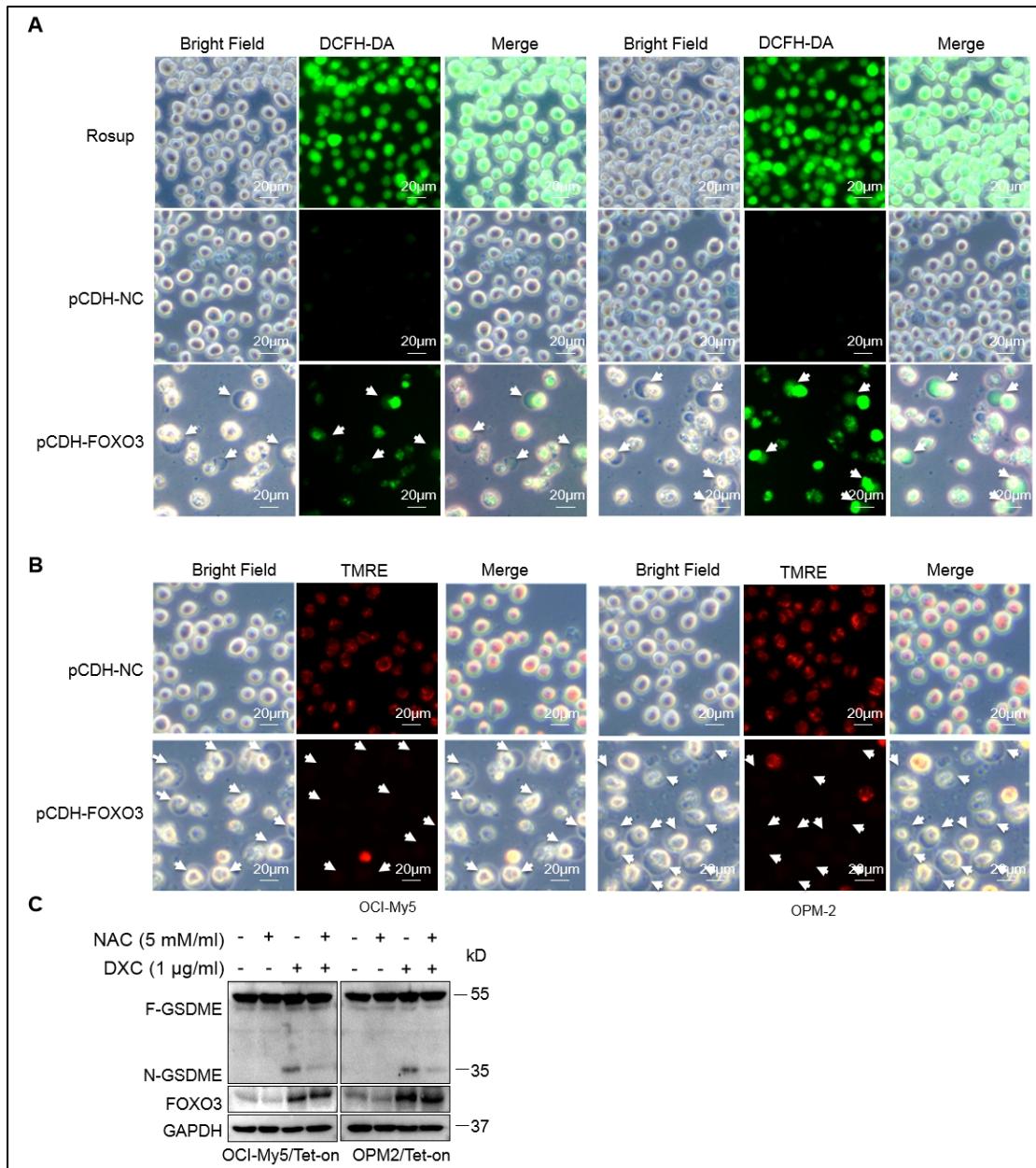
Specific knockdownsequence for Bcl-xL	
shBcl-xL #1	5'-GCTCACTCTCAGTCGGAAAT-3'
shBcl-xL #2	5'-GTGGAACCTATGGGAACAAT-3'
Specific knockdownsequence for BNIPL	
shBNIPL#1	5'-GCTGGACAGTGGACATGAATTCTCGAGAATTGATGTCC ACTGTCCAGC-3'
shBNIPL#2	5'-GCTGGATACGTCAGTGTACCTCAAGAGAGGTAACAC TGACGTATCCAGC-3'
Supplementary Table S5. The primers for the regulatory region of GSDME	
GSDME (1~2000): P0	
Forward	5'-TGCAGGTGCCAGAACATTCTCTATCGATAGGTACCCCA AAGCACCCCAAGGCTGG-3'
Reverse	5'-AGGACACCTTCTTATTGCTCTACTCATAACTAAAAGGTCT GCGGAGATTC-3'
GSDME (-500~1): P4	
Forward	5'-TGCAGGTGCCAGAACATTCTCTATCGATAGGTACCCCA AA-3'
Reverse	5'-TGGTGGCTTACCAACAGTACCGGAATGCCAAGCTTCATA AC-3'
GSDME (-1000~501): P3	
Forward	5'-TGCAGGTGCCAGAACATTCTCTATCGATAGGTACC-3'
Reverse	5'-TGGTGGCTTACCAACAGTACCGGAATGCCAAGCTT-3'
GSDME (-1501~1001): P2	
Forward	5'-TGCAGGTGCCAGAACATTCTCTATCGATAGGTACC-3'
Reverse	5'-TGGTGGCTTACCAACAGTACCGGAATGCCAAGCTT-3'
GSDME (-2000~1500): P1	
Forward	5'-TGCAGGTGCCAGAACATTCTCTATCGATAGGTACC-3'
Reverse	5'-TGGTGGCTTACCAACAGTACCGGAATGCCAAGCTT-3'
GSDME-ΔFRE1 (Δ1)	
Forward	5'-CAATTCTGCCTCCAAAGGAAGAATAAAAGGCAGAAATG AAATCCACAGG-3'
Reverse	5'-CTGTGGATTCTATTCTGCCTTTATTCTCCTTGGAGGC AGAAATTGG-3'
GSDME-ΔFRE2 (Δ2)	
Forward	5'-ATAGGTACCTATAGACTGTATTCTATAAGAGAAAAGCAA ATGTTACGAAG-3'

Reverse	5'-TGGTGGCTTACCAACAGTACCGGAATGCCAAGCTTGGGG GCTGCATGCAC-3'
GSDME-ΔFRE1ΔFRE2 (GSDME-Δ1Δ2)	
Forward	5'-GATAGGTACCTATAGACTGTATTCTTATAAGAGAAAAGCA AATGTTACGAAGAAAAAC-3'
Reverse	5'-GCCTTTATTCTCCTTGGAGGCAGAAATTGGGCATAAGA CAATAC-3'

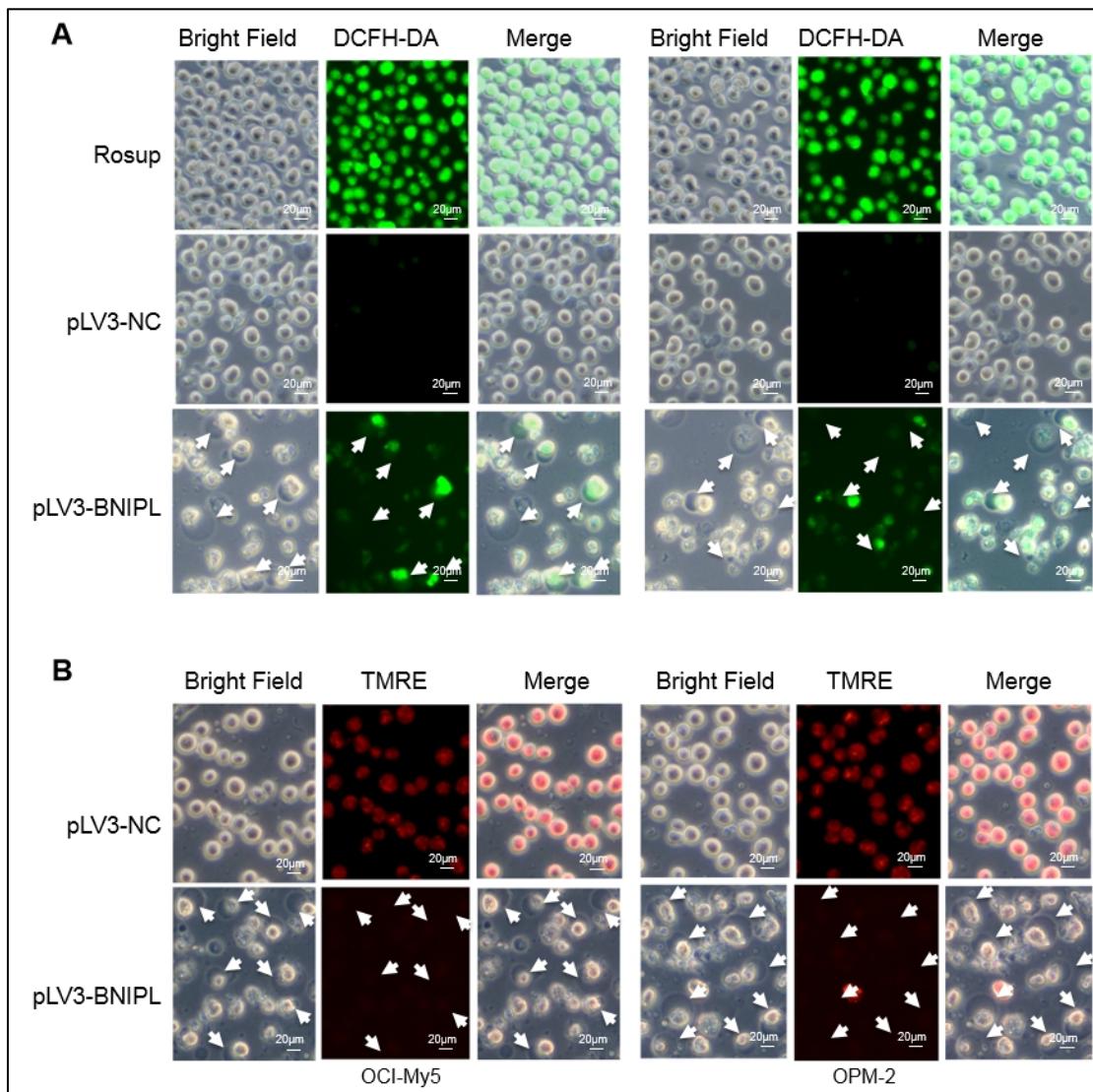
40

41

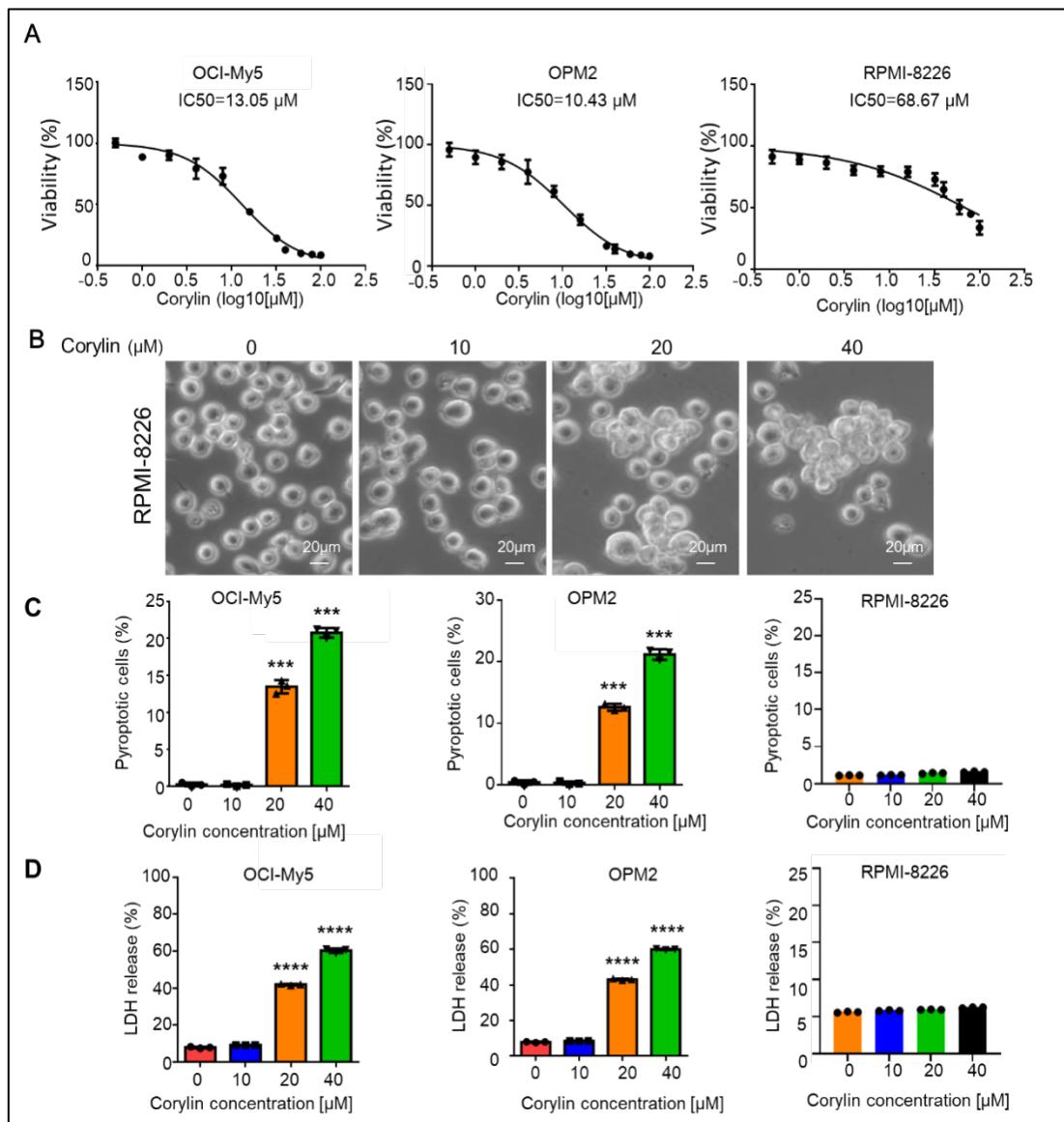
42


43 **Suppl. Fig. S1. GSDME is required for FOXO3-induced myeloma cell pyroptosis.**

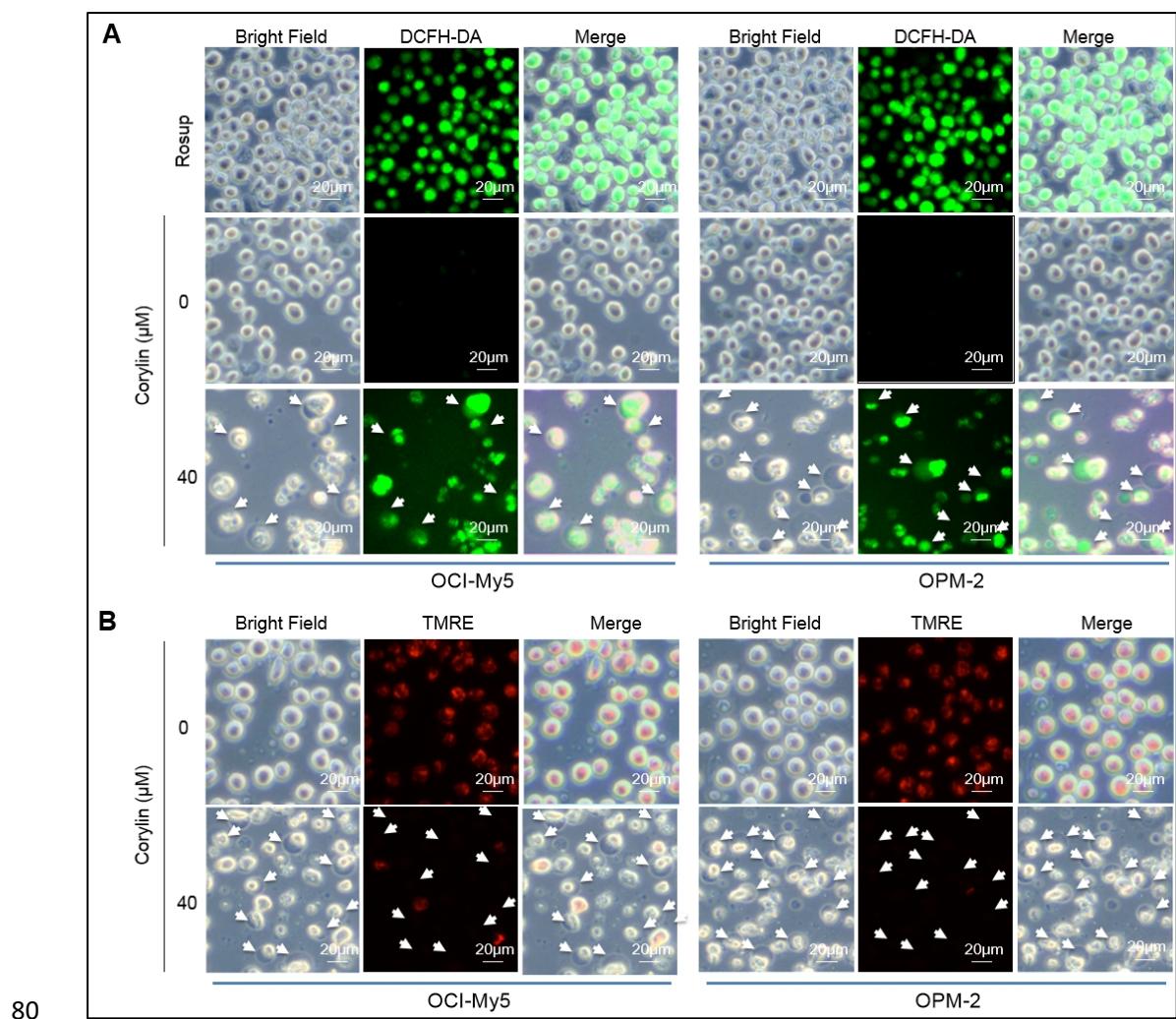
44 OCI-My5 and OPM2 were knocked out GSDME, followed by infection with FOXO3 along

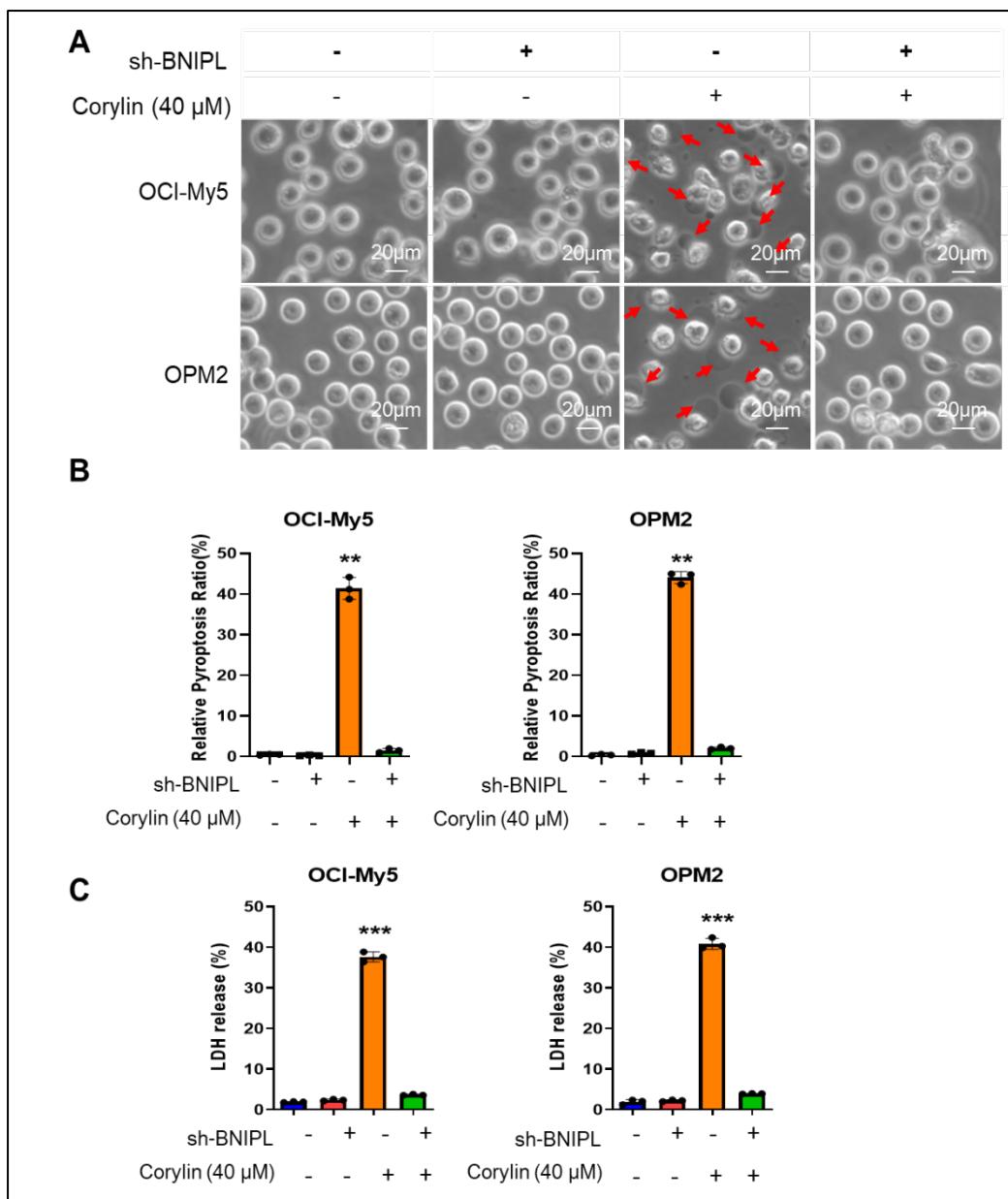

45 with wild-type or D270A mutant GSDME. A, LDH in culture media was measured. B, Cell

46 lysates were subjected to IB assays. C-D, OCI-My5 and OPM2 cells were infected with
47 lentiviral FOXO3 for 72 h, followed by zDEVD-FMK treatment. Cell pyroptosis was subjected
48 to Phase-contrast microscope analysis (C) and the cell lysates were subjected to WB for
49 GSDME and Caspase-3 activation(D). E-F, MM cells were infected with lentiviral FOXO3 with
50 increased titration (E) for 3 days or increased incubation days (F), followed by measurement of
51 IL-18 by using an ELISA kit. LPS/Nigericin was used as a positive control. G-H, MM cells were
52 infected with lentiviral FOXO3 with increased viral particles of infection (G) for 3 days or
53 increased incubation days (H), followed by measurement of IL-1 β by using an ELISA kit.
54 LPS/Nigericin was used as a positive control.n.s., not significant. ***, $P < 0.001$.


55
56

58 **Suppl. Fig. S2. FOXO3 triggers ROS production and decreases mitochondrial**
59 **membrane potential (MMP) in MM cells.** A, MM cells were treated the positive control
60 Rosup or infected with FOXO3 lentivirus. Cells were then stained with DCFH-DA to measure
61 ROS production (A) or stained with TMRE to measure MMP (B). Arrows indicated pyroptotic
62 cells. C, OCI-My5 and OPM2 stably infected with Tet-On/FOXO3 lentivirus were pre-treated
63 with N-acetyl cysteine (NAC) for 5 h, followed by treatment with doxycycline (DXC) for 48 h.
64 Cell lysates were then prepared for IB assays.


67 **Suppl. Fig. S3. BNIPL overexpression elevated intracellular ROS levels and**
 68 **decreased MMP in MM cells.** A, MM cells were treated the positive control Rosup or
 69 infected with BNIPL lentivirus. Cells were then stained with DCFH-DA to measure ROS
 70 production (A) or stained with TMRE to measure MMP (B). Arrows indicated pyroptotic
 71 cells.



73

74 **Suppl. Fig. S4. Corylin induces MM cell pyroptosis in a GSDME-dependent manner.**

75 A, OCI-My5, OPM2 and RPMI-8226 cells were incubated with increased corylin for 48 h
 76 followed MTT assay. IC₅₀ was calculated. B, RPMI-8226 cells were treated with increased
 77 corylin for 24 h, followed by Phase-contrast microscopy analysis. C, Statistic analysis of
 78 pyroptotic cells from corylin-treated MM cells. D, LDH release into culture media after cells
 79 were treated with corylin was measured. ***, P< 0.001; ****, P< 0.0001.

87

88 **Suppl. Fig. S6. BNIPL is required for Corylin to induce MM cell pyroptosis. A-C, MM**
 89 cells were knocked down BNIPL followed by incubation with increased corylin for 48 hrs. Cell
 90 pyroptosis was analyzed by Phase-contrast microscopy (A), pyroptosis ratio (B) and LDH
 91 measurement (C). ***, $P < 0.001$. Arrows indicated pyroptotic cells.

92