

Supplementary Materials

FKBP10 promotes M2 polarization of macrophage via MEK/ERK/CXCL8 axis and facilitates tumor progression in clear cell renal cell carcinoma

Supplementary Materials Checklist

Supplementary Methods

Supplementary Tables

Table S1 Key resources table

Table S2 Gene list of published immune-related signatures for the TIME classification.

Table S3 Gene lists of published 12 renal cell signatures for the Jaccard analysis.

Table S4 Clinical phenotype data of seven single-cell sequencing datasets utilized in the study.

Table S5 List of signature genes expressed in 74 defined cell clusters in ccRCC.

Table S6a Gene list of four TIME subtypes related signatures.

Table S6b Total results of GO and KEGG enrichment analysis of TIME related signatures.

Table S7 TIME subtypes of ccRCC patients.

Table S8a List of gene loadings within each gene expression programs that involved in meta-program 1.

Table S8b List of gene loadings within each gene expression programs that involved in meta-program 2.

Table S8c List of gene loadings within each gene expression programs that involved in meta-program 3.

Table S8d List of gene loadings within each gene expression programs that involved in meta-program 4.

Table S8e List of gene loadings within each gene expression programs that involved in meta-program 5.

Table S8f List of gene loadings within each gene expression programs that involved in meta-program 6.

Table S9 List of signature genes for ecosystem subtypes.

Table S10 Detail information of 15 genes involved in the optimal prognostic model.

Supplementary Figures

Figure S1 Flowchart summarizing the entire study design.

Figure S2 Quality control metrics of single-cell RNA sequencing data across all samples prior to filtering.

Figure S3 Quality control metrics for single-cell RNA sequencing data after filtering.

Figure S4 Comparative analysis of immune and stromal cell proportions between TLS-high and TLS-low groups.

Figure S5 Distinct characteristics of TIME subtypes.

Figure S6-S16 Gene expression within each gene expression program in each sample.

Figure S17 Hallmark pathways enrichment of six malignant meta-programs.

Figure S18 Distributions and clinical associations of six program tumor cells.

Figure S19 Analysis of ligand-receptor interactions in tumor ecosystems using CellphoneDB.

Figure S20 Ligand-receptor interactions, distribution, and signaling pathways across tumor ecosystems.

Figure S21 GSEA ridge plot analysis of tumor ecosystem signatures across GO, KEGG, and Hallmark gene sets.

Figure S22 Spatial co-localization analysis between EMT-high tumor cells and specific immune cell types.

Figure S23 NicheNet analysis and functional enrichment of the ecosystem 2 signature.

Figure S24. Assessment of prognostic model performance through forest plot and 10-fold cross-validation.

Figure S25 Forest plots of univariable and multivariable Cox regression analyses for the prognostic model across multiple cohorts.

Figure S26 Validation and evaluation of ISM-EMTRS prognostic potentials.

Figure S27 Validation of the role of FKBP10, DPEP1 and DNASE1L3 in ccRCC across 6 cohorts.

Figure S28 Association of FKBP10, DPEP1, and DNASE1L3 expression with survival outcomes in immunotherapy cohorts.

Figure S29 FKBP10 is an independent prognostic factor and remodels the tumor immune microenvironment in ccRCC.

Figure S30 Analysis of immune cell infiltration stratified by FKBP10 expression levels in E-MTAB-1980 and Checkmate cohorts.

Figure S31 Analysis of immune cell infiltration stratified by FKBP10 expression levels in TCGA-KIRC and JAVELIN cohorts.

Figure S32 Analysis of transcription factor binding and prioritization of a key regulator at the CXCL8 locus.

Supplementary Method

scRNA-seq Data Processing

The initial step involved the exclusion of peripheral blood mononuclear cell data to emphasize the tumor-infiltrating immune cells. Low quality cells (<300 or >5,000 genes detected; <500 UMIs; >20% (for tumor samples) or >80% (for benign samples) mitochondrial reads; >1% hemoglobin gene content) were also excluded before being merged together. The mitochondrial gene content restrictions were based on the observed mitochondrial read disparities in prior kidney scRNA-seq and bulk RNA-seq studies [1-4]. Subsequently, DoubletFinder was employed for potential doublet cell filtration [5]. Normalization was achieved using NormalizeData function, with 3,000 highly variable genes (HVGs) identified using the FindVariableFeatures function, and gene scaling to unit variance. Cell clusters were delineated through principal component analysis (PCA) of the top 20 principal components (PCs), integrating batch effect rectification via the harmony package. The Louvain method was employed for clustering, and dimensionality reduction was performed using Uniform Manifold Approximation and Projection (UMAP).

We annotated the six major cell types identified in our dataset on the basis of well-known marker genes, including CD3D, CD3E, CD8A, CD4, NKG7 for T lymphoid cells; CD79A, CD79B, CD19, MS4A1 for B lymphoid cells; C1QA, C1QB, C1QC, CD68, ITGAX for myeloid lineage; PECAM1, KDR, AQP1, PLVAP for endothelial cells; COL1AL, COL3A1, ACTA2, PDGFRB for fibroblast; EPCAM, PAX8, KRT18, KRT8, NNMT for epithelial cells. Among these epithelial cells, malignant cells were further distinguished from non-malignant cells by inferring large-scale CNVs using inferCNV. Non-malignant epithelial cells derived from normal samples were used as references for CNV estimation.

We conducted a second round of clustering to further characterize the subpopulations of major cell types. Owing to the variable amount and properties of cells in each major cell type, different parameters for clustering were used. For the clustering of NK or T cells, the top 20 PCs were selected based on 3,000 HVGs (resolution=0.8). For clustering of B cells, the top 15 PCs were selected on the basis of 2,000 HVGs (resolution=0.6). For myeloid cells, the top 20 PCs were selected on based on 3,000 HVGs (resolution=0.5). For endothelial cells, the top 15 PCs were selected based on 2,000 HVGs (resolution=0.4). For fibroblasts, the top 15 PCs were selected based on 1,000 HVGs (resolution=0.4).

As a result, 75 cell clusters were identified. Annotation relied on the most highly expressed immune-related genes in each cluster, with the gene list curated according to previous findings [6]. To facilitate data visualization, cells were re-clustered into five embeddings using Seurat, including (1) NK and T cells, (2) myeloid cells, (3) B cells, (4) endothelial cells, (5) fibroblast. Next, we used the FindAllMarkers function to identify differentially expressed genes (DEGs) with adjusted $P < 0.05$ using the Bonferroni correction.

CytoTRACE Stemness Analysis

CytoTRACE was utilized to assess cellular stemness within the epithelial cluster, with higher gene counts in single cells indicating lesser differentiation and elevated stemness [7]. This algorithm aids in identifying genes

that significantly correlate with cellular gene counts and stemness, thereby enabling precise stemness scoring.

Immune Infiltration Analysis

To comprehensively characterize the immune cell composition in the tumor microenvironment, we applied multiple computational algorithms, including ESTIMATE, Cibersort, MCP-counter, EPIC, and xCell. These methods leverage distinct principles to infer immune cell abundances from bulk transcriptomic data, providing complementary insights into stromal, immune, and malignant cell proportions.

The ESTIMATE algorithm employs single-sample gene set enrichment analysis (ssGSEA) to generate stromal, immune, and combined ESTIMATE scores, reflecting the presence of stromal and immune cells in tumor tissues. Tumor purity was derived from the ESTIMATE score using the formula: Tumor Purity = $\cos(0.6049872018 + 0.0001467884 \times \text{ESTIMATE score})$ [8]. Cibersort utilizes support vector regression to deconvolute expression data against the LM22 leukocyte signature matrix, quantifying 22 immune cell subtypes [9]. MCP-counter calculates the geometric mean of marker gene expressions to estimate absolute abundances of 8 immune and 2 stromal cell types [10]. EPIC employs constrained least squares regression to infer proportions of immune and cancer cells [11], while xCell applies ssGSEA-based enrichment to score 64 immune and stromal cell types [12]. The integration of these methods ensures robust and complementary evaluation of immune infiltration.

Sample Collection and Cell Culture

ccRCC and corresponding para-carcinoma tissues were collected directly from the operating room during nephrectomy. At the time of specimen extraction, samples of around 1-1.5 cm were obtained by the treating surgeon from tumor regions and para-tumor regions (at least 1 cm apart). Once in the operating room, small tissue aliquots (of around 5 mm³) were separated from each sample for subsequent experiments. One aliquot was placed in 10% formalin for immunohistochemistry (IHC). The remainder of the tissue was placed in liquid nitrogen and transported on regular ice to the laboratory for subsequent quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis.

The human renal cell carcinoma cell lines 769-P, 786-O and OS-RC-2 were used for experimental validation. All cell lines were cultured in RPMI1640 Medium, supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicillin/streptomycin, and were maintained in an incubator at 37°C and 5% CO₂. Cell lines were subcultured by detaching cells using 0.25% trypsin EDTA, quenching, washing, and resuspension of the cell pellet in fresh media.

Quantitative Real-time Polymerase Chain Reaction

Tissues were homogenized and incubated for the indicated times with either compound or vehicle, and RNA was isolated using a universal RNA purification kit. cDNA was generated using a reverse transcription kit. qPCR was executed in triplicate using SYBR Green Master Mix on Quant-Studio 5 System. Gene expression

levels were quantitatively assessed with the method of $2^{-\Delta\Delta C_t}$.

Protein Extraction and Western Blot Analysis

For proteins extraction, tissues or cells were homogenized in RIPA lysis buffer containing 150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris (pH 8.0), supplemented with protease and phosphatase inhibitors, and incubated on ice for 30 minutes to ensure complete lysis. The homogenates were then centrifuged to remove the cellular debris. The protein concentration in the supernatants was quantified using a BCA Protein Assay Kit. For electrophoresis, lysates were prepared by mixing 2× sample buffer (0.125 M Tris-HCl, pH 6.8, 4% SDS, 20% glycerol) enriched with 4% β -mercaptoethanol, followed by denaturation at 100°C for 10 minutes. Denatured proteins were resolved on SDS-PAGE gels and subsequently transferred onto PVDF membranes. Non-specific binding sites on the membranes were blocked with 5% skim milk at room temperature. Primary antibodies against FKBP10 (1:5000), DNASE1L3 (1:1000), DPEP1 (1:2000), MEK (1:10000), ERK (1:3000), p-MEK (1:1000), p-ERK (1:2000), ELF3 (1:200), Vinculin (1:20000), and CXCL8 (1:1000) were applied to the blocked membranes and incubated overnight at 4°C. After incubating with horseradish peroxidase-conjugated secondary antibodies, the protein bands were visualized using the Amersham ImageQuant 800 imaging system.

Immunohistochemical Staining

Formalin-fixed, paraffin-embedded (FFPE) sections of ccRCC tissues (4 μ m thickness) were subjected to IHC staining using standard protocols. Briefly, sections were deparaffinized in xylene and rehydrated through a graded ethanol series. Antigen retrieval was performed by incubating slides in citrate buffer (pH 6.0) at 95°C using a microwave heating system. Endogenous peroxidase activity was quenched with 3% hydrogen peroxide, followed by blocking with 5% BSA.

Primary antibodies against FKBP10 (1:200), DNASE1L3 (1:200), DPEP1 (1:1000), N-cadherin (1:4000), Vimentin (1:5000), and E-cadherin (1:5000) were applied to tissue sections and incubated overnight at 4°C. After washing with PBS, slides were incubated with HRP-conjugated secondary antibodies. Diaminobenzidine (DAB) was used as the chromogen, and hematoxylin was applied for nuclear counterstaining.

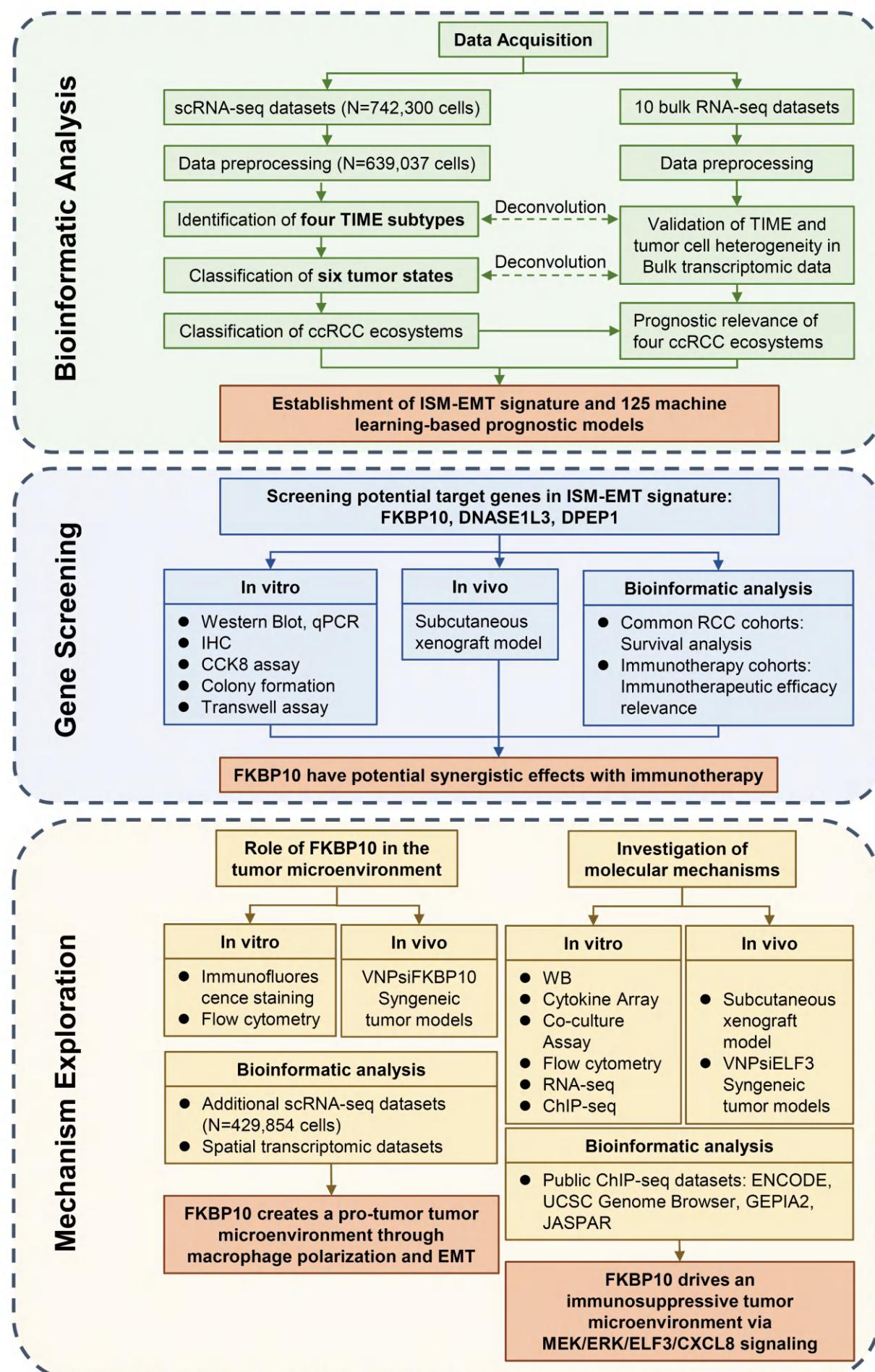
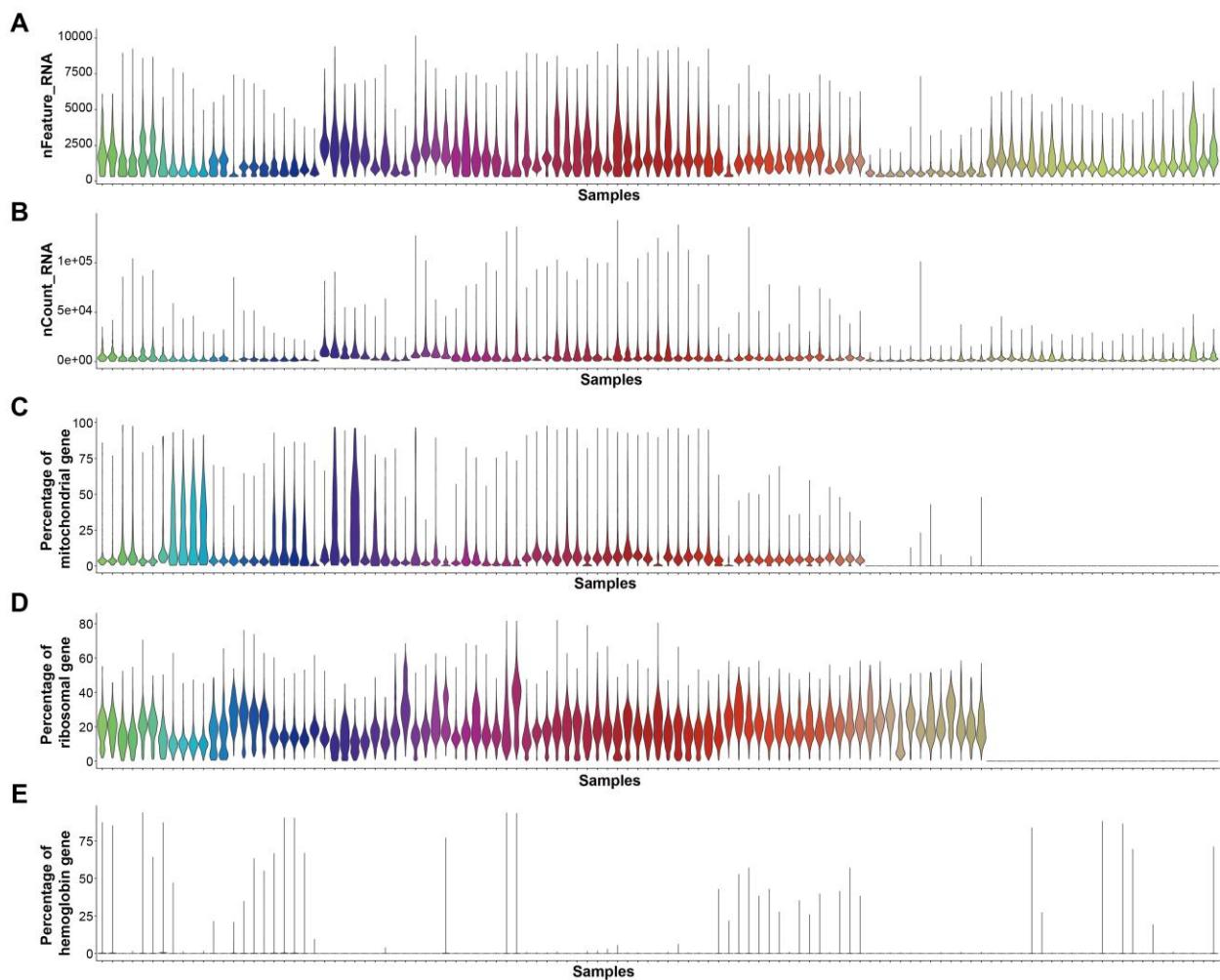
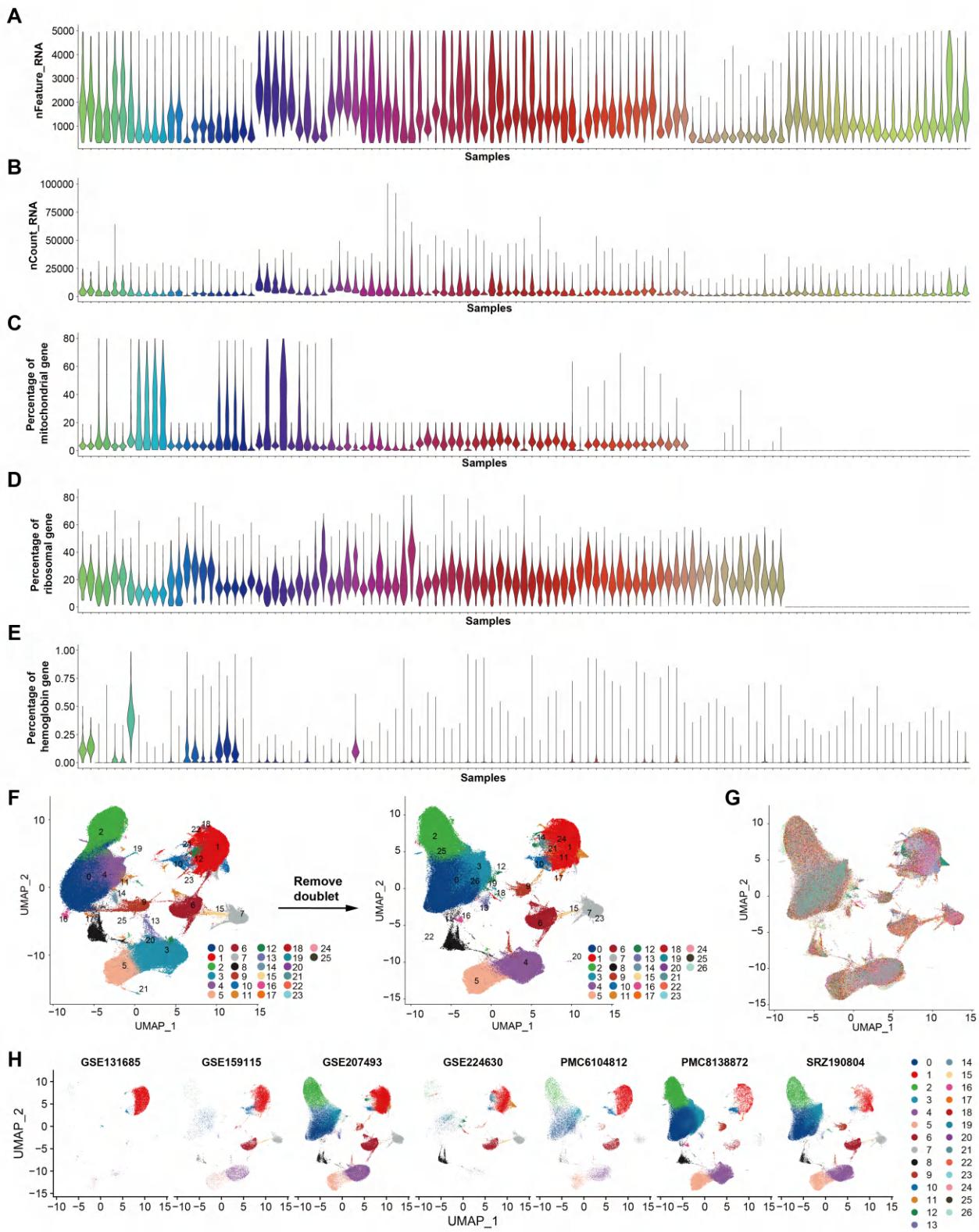




Figure S1 Flowchart summarizing the entire study design.

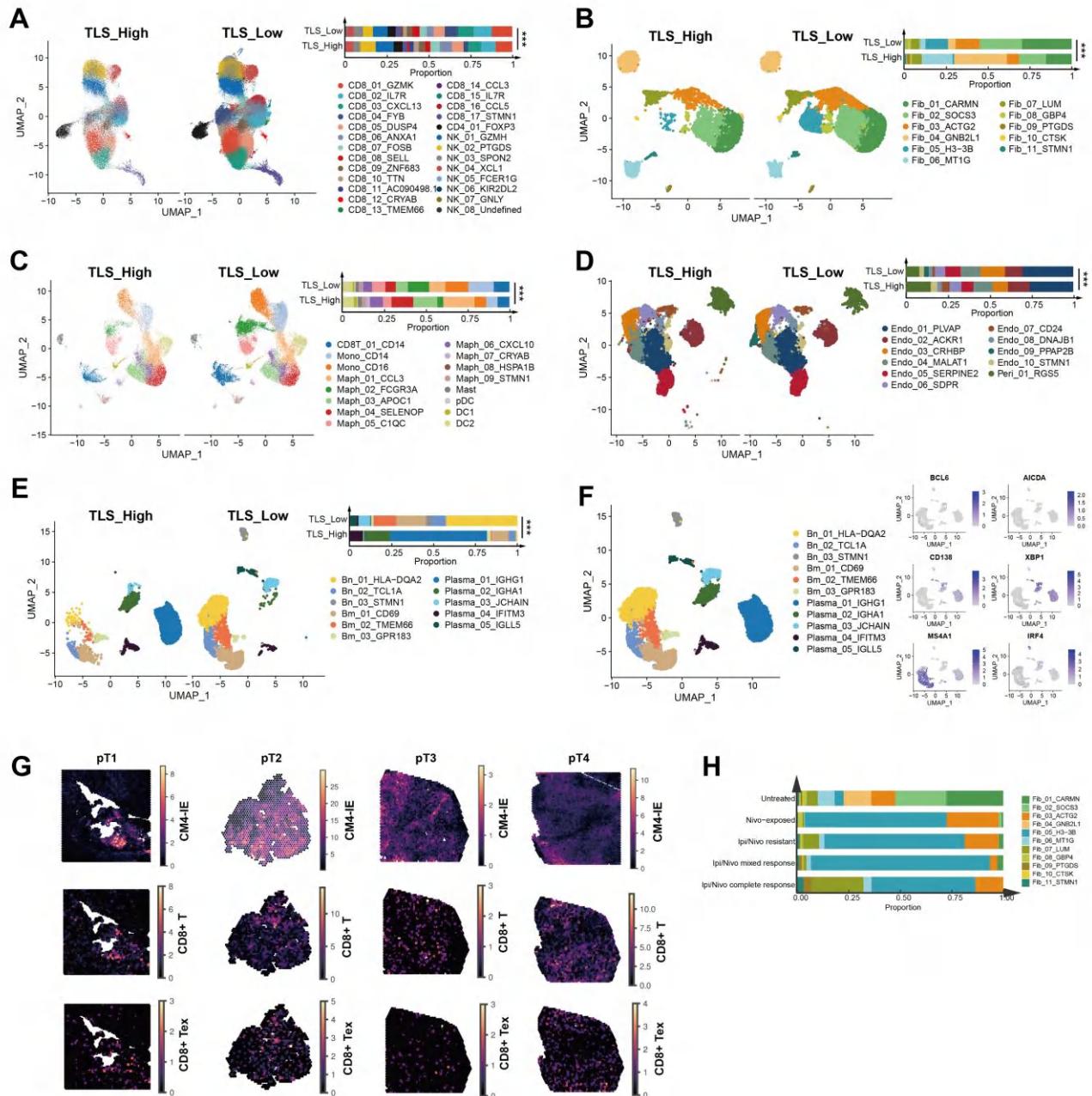

Figure S2 Quality control metrics of single-cell RNA sequencing data across all samples prior to filtering.
 Violin plots display the distribution of five key QC metrics for each sample: (A) nFeature_RNA: the number of unique genes detected per cell. A low count may indicate a damaged or low-quality cell. (B) nCount_RNA: the total number of molecules (UMIs) detected per cell. Extreme values (very low or very high) can suggest poor cell quality or the presence of multiple cells (doublets), respectively. (C) Percentage of mitochondrial gene: the percentage of cellular transcripts mapping to the mitochondrial genome. A high percentage is indicative of cellular stress or apoptosis. (D) Percentage of ribosomal gene: the percentage of transcripts mapping to ribosomal protein genes. (E) Percentage of hemoglobin gene: the percentage of transcripts mapping to hemoglobin genes. The shape of each violin represents the kernel density estimation of the data distribution. These metrics are crucial for identifying and removing low-quality cells to prevent technical artifacts from influencing downstream analyses.

Figure S3 Quality control metrics for single-cell RNA sequencing data after filtering.

(A-E) Violin plots display the distribution of key QC metrics across all samples after quality filtering. Violin plots show number of detected genes per cell (nFeature_RNA), total UMI counts per cell (nCount_RNA), and the percentage of reads mapping to mitochondrial, ribosomal, and hemoglobin genes. Cells falling outside defined thresholds for these parameters were filtered to ensure data quality for downstream analysis. (F) UMAP plot showing clusters of all cells from seven public datasets before doublet cell filtration (left), and after doublet cell filtration (right). Dots represent individual cells, and colors represent different clusters. (G)

UMAP plot showing clusters of all cells, with color coded by samples. It can be seen that the Harmony algorithm effectively eliminates the batch effect of different samples. (H) UMAP visualization after Harmony integration, with cells split by dataset. Harmony effectively aligns datasets by removing technical variations while preserving biological structures, as evidenced by the overlapping distribution of analogous cell populations across samples.

Figure S4 Comparative analysis of immune and stromal cell proportions between TLS-high and TLS-low groups.

(A-E) DimPlot illustrating the distribution of NK/T cells (A), fibroblasts (B), myeloid cells (C), endothelial cells (D), and B cells (E) across TLS-high and TLS-low groups. Cells are colored by cell type, and groups are segregated based on TLS signature scores. Stacked bar plot quantifying the relative proportions of each cell type within TLS-high and TLS-low groups. The B-cell compartment demonstrates the most notable shift, with

altered subset composition in TLS-high samples. Statistical significance was assessed using Chi-square test. TLS, tertiary lymphoid structure. (F) FeaturePlot visualization of germinal center (GC) gene expression levels for BCL6, AICDA, MS4A1, CD138, XBP1, and IRF4 across the B-cell subsets. Expression gradients are depicted from low (gray) to high (blue). (G) Spatial co-localization analysis between CM4-IE cells cells and specific T cell types. Representative spatial transcriptomics map showing the distribution of CM4-IE-high cells, CD8+ T cells, and exhausted CD8+ T cells within the tumor microenvironment. Color gradient indicates signature score intensity. CM4-IE-high cells exhibit spatial proximity to CD8+ T cells and exhausted CD8+ T cells. (H) Immunotherapeutic relevance of fibroblast clusters. Stacked histogram showing the fibroblast clusters proportion in ICB-treated and ICB-untreated cohort. Fib_05_H3-3B was found to significantly enriched in ICB-treated samples. Chi-square test was used for statistical analysis. Nivo, Nivolumab (anti-PD-1 monotherapy); Ipi, Ipilimumab (anti-CTLA-4 monotherapy).

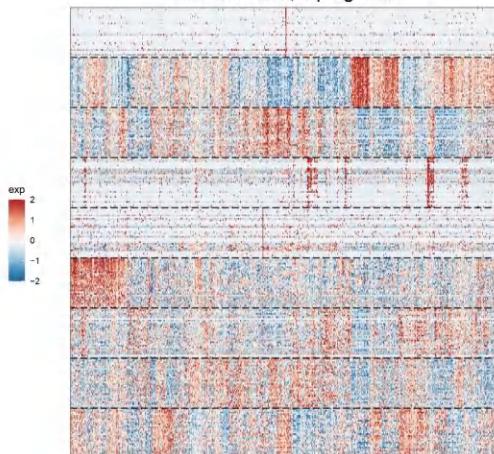
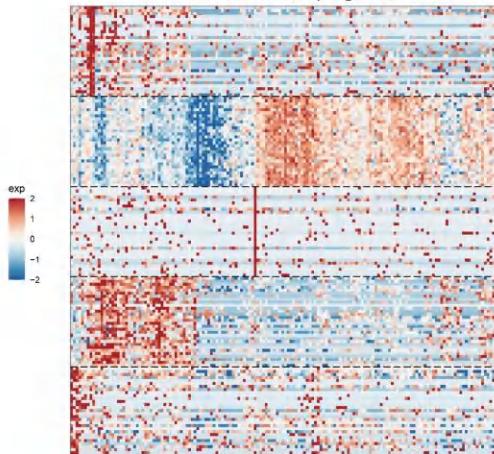
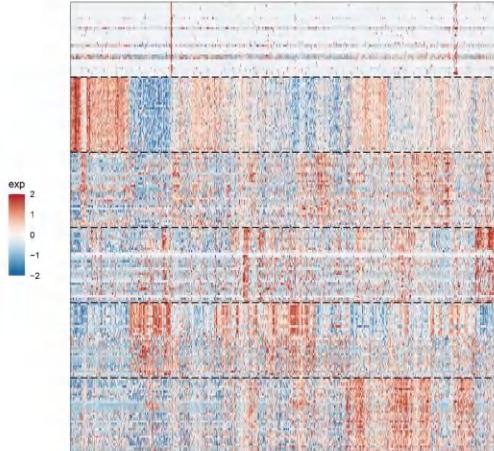
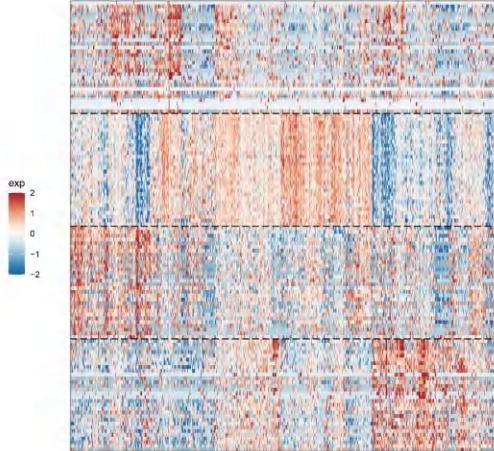


Figure S5 Distinct characteristics of TIME subtypes.


(A) Boxplots showing the expression of supplementary immune-related signatures in different TIME subtypes. Wilcoxon rank-sum test (two-sided) was applied for significance test. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$.

IA, immune activation; II, innate immunity; ISM, immune suppressive myeloid; IE, immune exclusion. (B) Boxplots showing the expression of exhausted and effector signatures in different TIME subtypes. Wilcoxon rank-sum test (two-sided) was applied for significance test. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$. (C) Overall survival (OS) of cases stratified by BisqueRNA predicted TIME-specific cell types proportion in Checkmate cohort (including all samples). Log-rank test was used for statistical analysis. (D) Stacked histogram showing the TIME proportion in ICB-treated cohort. (E) Stacked histograms showing TIME-specific cell types proportion across different tumor stages and pathological grades. Cell types proportion were predicted by BisqueRNA in TCGA-KIRC cohort. Chi-square test was used for statistical analysis. (F) Pie charts showing the proportion of TIME specific cell types across 52 patients. Patients with cells ($\geq 65\%$) from sole individual TIME subtype were classified as group 1 (monotypic TIME dominance) ($n = 16$), while patients with cellular composition shared by multiple TIME subtypes were classified as group 2 (heterotypic TIME integration) ($n = 36$). (G) Stacked histograms showing group cluster proportion across different tumor stages in our integrated scRNA-seq datasets. Chi-square test was used for statistical analysis.


T01: 829 cells; 9 programs


T02: 156 cells; 5 programs

T03: 1334 cells; 6 programs

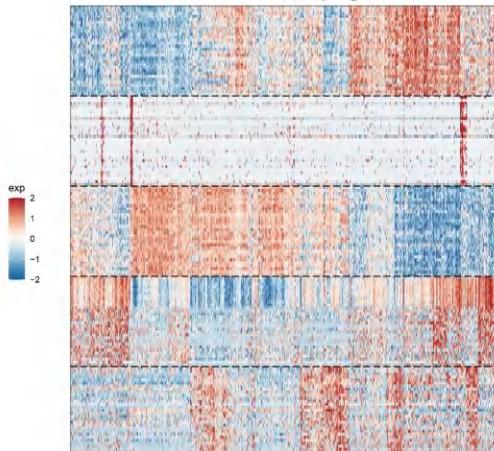
T04: 695 cells; 4 programs

T01_1; T01_2; T01_3; T01_4; T01_5; T01_6; T01_7; T01_8; T01_9

rnase1	pecam1	gimap7	cll14	fn1	sparc1
	fm167	ecscr1	chn1	eng	chn1
rp11-6112	sesn3	c2cd4b	sh3nc	stab1	stab1
adgr1	adgrc	sh3nc1	tgfbr2	pdxd1	pdxd1
adgr1	gsn	cd56	icfbp7		
rp11	rp11-1	cd56	thbd		
rp11-1	rp11-1	cd56	rp13	rp53	rp514
rp11-1	rp11-1a	cd56	rp13a	rp53a	rp514a
rp11-23a	rp11-11	cd56	rp13a	rp57a	rp512
rp11-8	rp11-11	cd56	rp15	rp112	rp515a
rp11-7a	rp11-36	cd56	cribr	rp112	rp515b
rp11-7a	rp11-36	cd56	cribr	rp112	rp515b
psmb9	psmb9	cd56	cribr	rp112	rp515b
psmb9	cs13	tfnsf10	c1s	rp112	rp515b
hla-dra	hla-d04	apol1	wars	ctss	s100a11
gbp5	gbp5	apol1	tpa	psme2	psmb8
vamp5	ie27	samd10	ube2l6	bsa	ifhl1
riaa101	stmn1	tk1	ube2l6	h2dpa1	stat1
		spc25	cdk1	top2a	
		tk1	spc25	top2a	
pcna	pttg1	h2afz	gins2	ube2t	mnd1
ube2c	rad51	cnepk	cd45	rad51ap1	cdt1
pkmy1	bir63	cd45	cd45	ef1	rp512a
		cd45	cd45	ef1	rp512a
tyrobp	msa7	ere6	fam26f	fcer1g	span1
cknab2	tmp2	aif1	rp11-295g20.2	cd48	tmp1
cknab2	tmp2	gpr1	cd48	krt7	prn1
imsy5	rdn3	h2afy4	cd48	gmfg	prl1
jun	clnd3	ie2r3a	egfr1	scs53	fos
	atf3	ie2r3a	egfr1	scs53	fos
zfp36	ppm1a	h2afy4	egfr1	scs53	fos
rhob	f05b	junb	dusp1	ddit3	cdod458
btg2	herpud1	cebpd	cdk2ap2	ifit2	cish
srnf3	ddit4	egfr	dnaub11	atf4	efna1
		egfr	dnab11	atf4	efna1
slc5a12	serf2	slc16a9	dnpn1	pdzk1p1	gsta1
addirf	apom	pepb1	da62	glyatl1	ociad1
addirf	apom	pepb1	mtc02	mtm1	pcn1
slc5a12	cnab14	hmgn3	gabp1	tmem174	uochd
phlda1	mt2a	el2	cbp5	dusp5	midn
	tgf1f1	kmdb6b	apobcb	tnfsf12a	midn
ysd3	mt2b	mtm01	chd1	lrp1	trb1
nf1l3	pfkb3	ier3	csnk1a1	epha2	mtcyb
ets1	gch1	ywhaz	klf4	fosi1	mt1b
		gch1	slc16a9	slc16a9	mt1b
pgk1	hla-a	ppfk	hspn00ab1	eno1	aldh1a1
itm2b	atp5b	aca2a	hla-b	tuba1c	hspn1
dnaa1a1	tmem17b	aca2a	bbdx1	cndp2	h2drb1
dcod1	dcod1	gpr1	cd56	h2drb1	pkxa1

T02_1; T02_2; T02_3; T02_4; T02_5

PTER	ATP5G3	COX7B	CAPN6	B4GALT2	SLC2A2
PRKCBP1	CHST13	GPD1	SPNS2	CES2	ST20
NDUF56	TIMM8B	GAMT	ATP5A1	PREL1D	MRPL35
ATP5G1	GTF3A	TMEM141	PP1A	MYO1B	NME1
PCSK1N	COX7A2	ICMT	PEPD	TRIB3	COX4I1
<hr/>					
RP58	RPL10	RPL8	RPS14	CCNI	RPL21
RP527	RP56	RPL13A	RPS20	RPL12	FTH1
RPL41	RPL36	RPS24	RPL27A	RPL11	RPL35
RPL19	RPL13	RPL30	EIF1	RPLP2	RPL18A
RP527A	RP54X	RPL32	RPS3A	RPS3	RPL23A
<hr/>					
FLT1	PLVAP	RGCC	INSR	PLPP1	HSPG2
PDGFD	IGFBP7	GSN	A2M	RASSF1	SDPR
IPO11	CLEC2B	SPRY1	GNAI2	NRP2	EVA1B
RND1	APOLD1	SPARC	CYP2U1	PGM2L1	AIF1L
RAB5A	TACC1	VWA1	B2ZB	GRB10	FRMD8
HSDP1	BBX01	AMN	HSPE1	TMEM176B	CFI
<hr/>					
SLC17A3	LGALS2	TMEM27	SLC13A1	ZFAND2A	KHK
TCN2	SLC3A1	TMEM176A	PRODH2	HSPH1	AQP1
CXCL14	TINAG	CLDN2	HSP90AB1	NAT8	CUBN
MTCYB	ACSM2A	MIOX	CTSH	AOC1	MT-CO3
<hr/>					
UBD	S100A11	IL32	PFN1	WARS	INHBA
ANXA2	PSME2	S100A1	ANXA3	PSMB10	YKT6
CDK7	RP11-283G6.4		CAV2	TRAF1	LAP3
FAM129A	RAC1	RASGRP3	SOD2	SESN2	CX3CL1
IGFBP3	PSMB9	TYMP	GARS	ATP2B1	APOL1


T03_1; T03_2; T03_3; T03_4; T03_5; T03_6

TOP2A	CDK1	MK167	CENPF	TPX2	UBE2C
PTTG1	B1RC5	BUB1	CDC20	STMN1	RACGAP1
ANLN	UBE2T	FAM83D	CCNB2	S100A2	TUBA1B
PBK	SPC25	RRM2	TUBB	H2AFZ	GTSE1
SHCBP1	HMMR	NUSAP1	PRC1	ZWINT	CENPE
RPS18	RPL9	RPS4X	RPL23A	RPL13A	RPS3A
RPL10	RPL13	RPL11	RPL21	RPS14	RPS3
RPS27A	RPS8	RPS6	RPS2	RPS23	RPL18
RPL7	RPL18A	RPL8	RPS27	RPL24	RPL5
RPS5	RPL30	RPL34	RPS24	JUNB	RPL37A
S100A10	ITMB2	FHL1	KRT8	IGFBP6	CLDN4
KRT18	S100A11	TSPAN1	CLDN7	HSPB1	NAPS
TMEM176B	AHNKA2	DEFB1	CKB	SMM24	LINC01320
TMEM176A	ANXA1	REG1A	AOC1	GUCA2B	FAM134B
ANXA2	CRIP1	TNFRSF12A	HSP90AA1	S100A6	LDHA
CD74	RARRE53	B2M	HLA-B	PSMB9	HLA-A
HLA-C	HLA-DRA	HLA-DRB1	IL32	IFIT2	GBP4
HLA-DMA	SERPINA1	GPBP1	HLA-F	PSMB10	HLA-DQ41
TAAP1	APOL1	TAP2	WARS	TAPBP	LP3
IGFBP3	PSMB8	STAT1	UBD	HLA-DOB1	HLA-DRB5
NEAT1	MTND4	MT-ND3	MT-CO2	MT-ATP6	XIST
MTND1	MTND2	MT-CO3	MALAT1	MTCYB	MT-CO1
MTND5	YBX3	VEGFA	KDM6B	JUND	FLNA
SLC5A3	ITGA3	AHNKA	PLEC	GLS	AGRN
SYNPO	HIPK2	CCNL1	TJP2	AC058781.1	VMP1
GSTA2	GSTA1	KHK	NAT8	APOM	CYB5A
PDZK1IP1	BBX01	MGST1	PRAP1	AQP1	CUBN
ACSM2B	HRSP12	UQCRCQ	TXN	OCIA2D	AGXT2
ATP1F1	AGT	ECH1	MSRA	DNP1H1	CXCL14
ATP5G3	CMBL	SSR4	FBP1	COX6C	GAL3ST1

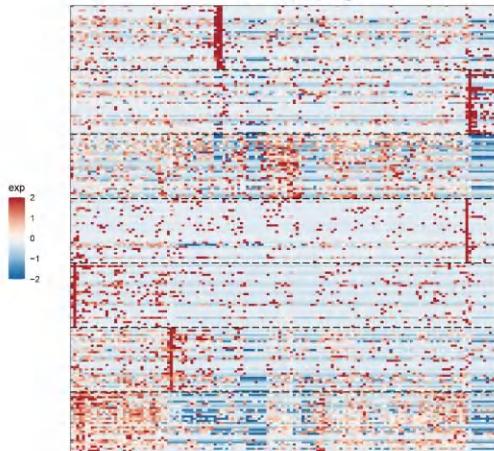
T04_1; T04_2; T04_3; T04_4

CDHR1	DNAJB1	HSPPE1	BAG3	ZFAND2A	HSPA6
HSPA1B	HSPA1A	SERPINH1	SMIM24	CACYBP	HSPD1
SLC17A3	HSP90AA1	NR4A1	NMB	CRYAB	HSPB1
HSPH1	DNAJB4	SCGN	COX6A1	CHCHD10	AC004012.1
UBB	ATP5B	DRAIC	GBP1	RP11-63A11.1	CYR61
RPL13A	RPL10A	RPS2	RPL18A	RPS5	RPL21
RPS3	RPS3A	RPL41	RPL3	RPL7	EEF1A1
RPLP0	RPL10	RPL11	RPL8	RPL23A	RPL5
RPS6	RPL19	RPS4X	GNB2L1	RPS27A	RPS17
RPS14	RPL15	RPS12	RPS18	RPS10	RPS9
FOSB	MALAT1	JUN	NEAT1	JUND	EGR1
FOS	BRD2	KLF6	FUS	RHOB	ATF3
SLC38A2	ZFP36L1	INTS8	ATF4	MTND2	DDX5
H3FB3	JUNB	VEGFA	IER2	UBC	BTG1
HIST1H4C	DUSP1	VMP1	MIDN	CTD.3252C9.4	MTND1
HLA.A	HLA.C	HLA.B	IGFBP3	B2M	S100A11
S100A6	PFN1	LGALS1	HLA.F	ARP1B	IGFBP7
CD70	PSME2	IFI27	C15orf48	IGFBP2	GAPDH
ACTB	CYBA	IFI6	P4HB	TIMP1	LGALS3BP
ANXA2	IGFBP6	SH3BGR3	CST3	CD63	CD59

T05: 1051 cells; 5 programs

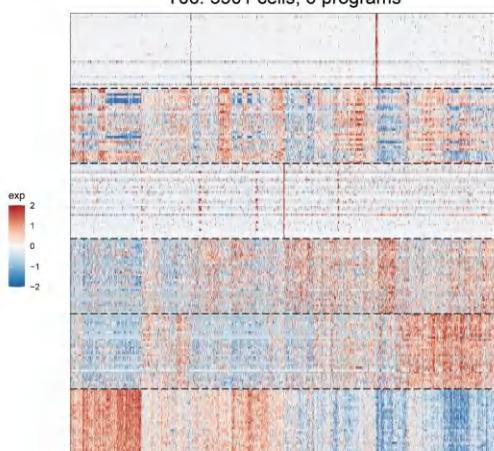
T05_1; T05_2; T05_3; T05_4; T05_5

BAG3	HSPH1	HSPD1	HSP90AA1	XBP1	HSPB1
CRYAB	ZFAND2A	DNAJB4	DDX5	DNAJA1	SELK
HSPB1	DNAJB1	CLK1	HSP90AA1	HSPB5	MCL1
CCNL1	SERPINH1	DDIT3	HSPA1B	PPP1R15A	HSPA8
ATF3	EGR1	HSP94	UBC	DED2	H3F3B
UBE2C	CCNB2	CCNB1	CENPF	NEK2	PLK1
TOP2A	PTTG1	NUF2	HMMR	STMN1	UBE2T
CDK1	H2AFZ	CDC48	CEP55	MKI67	HJURP
PRC1	AURKB	ASPM	NMU	CDC20	CKAP2
KIF20A	CDC43	TPX2	FAM84A	CENPW	ARL6IP1
ALDOA	EEF1A1	PKM	RPL10A	BST2	RPL3
PGAM1	TMEM59	TP1	HINT1	RPS3A	RPL4
RPL7	GAPDH	RPL5	SKP1	LAPTM4A	RPL21
RPL13A	PGK1	HLA.C	RPS5	GNB2L1	LDHB
FGG	RPS3	RPS27A	EIF3E	RPS2	RPS4Y1
MTND5	MTATP6	MT.ND4	MT.ND1	MT.C02	MT.ND2
MT.C01	MT.CYB	MT.ND3	MT.C03	MT.ND4L	ST5
KCNQ10T1	RRBP1	POLR2J3	INTS6	PLCG2	C1orf186
AGRN	RGS16	RP11.467L13.7	CSAD	RP11.42D9.4	LINC01320
RPL22L1	PAX2	CH17.189H20.1	HILPDA	RP11.79E2.4	HOOK2
MT2A	MT1E	PHLDA2	PHLDA1	LRRKIP1	CEBPB
MT1X	S100A16	PIM3	YWHAQ	CFLAR	TM4SF1
SERPINE1	FAM110C	FTH1	MAP1B	SMIM3	ODC1
S100A10	GOS2	FOXC2	FKBP5	SOD2	TXNRD1
BIRC3	DUSP5	TUBB2A	MSC	BHLHE40	PTPN1


T07: 1161 cells; 7 programs

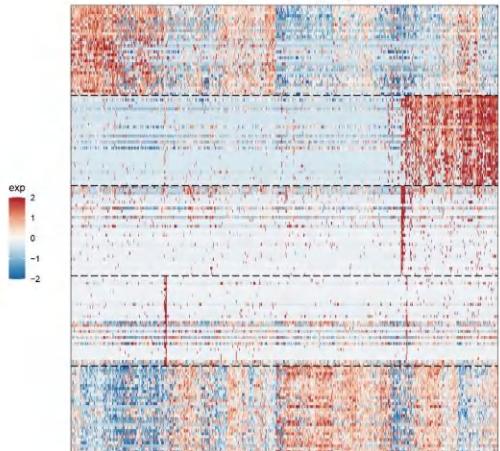
T07_1; T07_2; T07_3; T07_4; T07_5; T07_6; T07_7

RP44X	RPS6	RPL10A	RPS14	RPL18A	RPS1
RPL10	NPM1	RPS2	RPS21	RPL15A	RPL23A
RPL11	RPL41	RPS18	RPL7A	RPS3A	RPL14
RPL35A	RPL6	RPL13	RPS23	RPL3	RPL5
RPL31	RPS13	BTF3	RPS7	RPL18	RPL12
PTTG1	MK67	NEK2	UBE2C	TOP2A	HJURP
TROAP	KIF14	SPC25	CDKN3	RP11.84P9.2	ASPM
CCNB1	HIST1H4C	CENPF	UBE2T	CENPA	STMN1
PBK	HMMR	CDC20	NUF2	TUBA1B	CDC43
CENPW	BIRC5	CDK1	KIF20A	NUSAP1	PLK1
S100A11	MT2A	S100A10	ANXA2	ANXA1	FTH1
MT1X	EMR3	S100A6	TM1SF4	TM1SF4	CD63
CYBA	SPT1	PIM1	CDP10	LGMD1	CHVAB
IL32	SERPINA1	CLIC1	ACTB	M1T1	IGFBP3
PLP2	HLA.A	CD44	SERpine2	PFN1	ENO1
NFKBIA	EGR1	CXGL2	SDC4	IER3	PPP1R15A
FOSB	ATF3	IRF1	NFKB1Z	MCL1	NFKB1D
TNFAIP3	MAFF	JUNB	BTG2	C11orf96	JUND
PNRC1	CYLD	FSTL3	TNFAIP2	CXCL8	MIDN
ICAM1	SOD2	CXCL3	XBP1	ABL2	GEM
CP	UQCRC	MALAT1	FGB	AC159540.1	VCAN
VEGFA	ABC3	CD74	LGMD1	LGMD4A	RP5.1021120.2
NEAT1	IRS2	PNIS2	SDC4	IER3	PPP1R15A
NAP1L1	APOB	NFTX2	IRF5	ANKR012	N4BP2L2
SPIN6	DXD17	SEPE1	CDP10	TMEM39	PDK1
KIF14	ADM	KCNQ1OT1	TMEM176B	TMEM176A	TMEM37
HLA.A1	HLA.DP1	CD74	TMEM176B	TMEM176A	TMEM37
HLA.DR1	CXCL14	BTG2	TMEM176B	TMEM176A	TMEM37
REG1A	NDUF4A2	MYH8	SEPE1	HLA.C	HLA.B
CLU	GPX3	ECH1	HLA.DRA	CD2	ACMSD
TCEA1	CHCHD10	SPINK1	RNF187	TSLP	NUPR1
RPL1P1	SLC3A2	FTL	BEX2	RPS16	EIF1
HSP90	EIF2S2	RPL13A	LARP6	RPS27	REXO2
GFP71	CEBPG	RPL30	CLGN	CCPG1	SARS
MTHFD2	SEC11C	CTC.57N18.1	RPL37A	NACA	SHMT2


T10: 146 cells; 7 programs

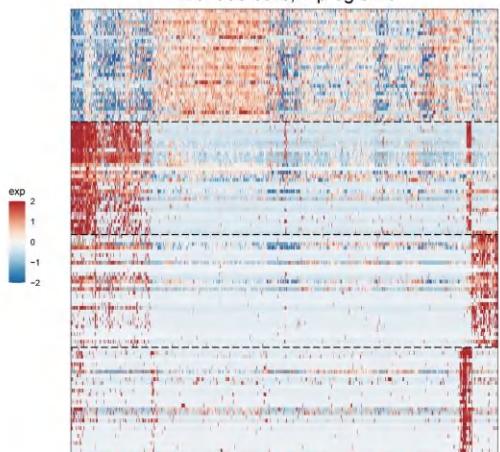
T10_1; T10_2; T10_3; T10_4; T10_5; T10_6; T10_7

MARVELS1	BCL2A1	EB15	LAMP3	SD40	TUB66
TRAF1	SRGN	BIRC3	RASSF4	EP3011	CCR7
LITAF	NUB1	PLEK	NFKB1A	POOLUT1	SAMSN1
CD83	N4BP2L1	CKB	GSN	IRF8	MGLL
IRF1	TXN	RASSF2	CD86	MIR234H	SLC5A6
H4C3	SPAG4	NDUF4A2	MT2A	PBK	PIMREG
C5K2	TUBA1C	IGFBP7	CRYAB	VIM	TUBA1B
CAV1	ANGPTL4	CDC43	ANXA2	EGLN3	FHL2
ATP8B3	KRT8	RARRES2	FOS	CALD1	RHEB
ATF3	GAPDH	PP1IBP1	PHLDA2	ENPEP	MIF
CORO1A	ARHGD1B	SGMS1	EVL	YWHAZ	TRAF3IP3
GN1A2	CNN2	SEPLPG	BIN2	RAC2	LCK
ITGB3	CX3CR1	SYVET	CD200	CD200V	ITGB3
VAMP4P	AR4C	THEMIS	IG6AP1	RFX7	ARF6AP1
TMSB4X	ZFP26L2	TRMT2B	TAGAP	GIMAP4	GIMAP4
FGF2	SAMHD1	FAM13A	SMIM14	HP55	
SLC22A5	GCLC	SCD	APBB3	KLHL24	SKIL
EFRA3	SLC39A10	MSA6A6	NUDT16	MYO5	ZBTB4
ABL2	VCL	SGK1	HLA.DRA	GRN	FAM91A1
SPRYD7	RBBP9	ZNF852	WARS1	TMK1	DIXDC1
CASZ1	RAMP1	MAVS	LARP1B	FLAD1	NDUF4F1
CTTN	CQ2	DDIT3	TOPORS	TMEM97	RASGEF1A
PSMAB	STAMBPL1	STX11	PRPF18	CNNM2	RIPK1
CGAS	BAG3	PTRFDC1	NFE2L3	BCAT1	SCNN1B
CCDC150	PMAP1P1	SCD	SPEP1	EAFF1	ZNF102B
ITGB4	TLR13	LGX93	C1QB7	TMEM54F	NDUF4B
ITGB5	RA53A	MGRIP2	SOR10	NPM1	NPM1
RRP9	WDR77	LTB	UTP11	CEP72	ZBTB32
APRT	SLURP	LAI2	HMG1A1	RAFAH1B3	ATP5MC3
PON2	HLA.DQA2	WDR43	IMPDH2	HACD1	SNRPG
CMC1	PON3	HLA.DQA1	CTHRC1	CST7	XCL1
CD27	HLA.DRB5	SYNGR2	HLA.DMA	HLA.DRB1	ITM2A
SEC11C	DBI	NMNNAT3	PMCH	DCTP1	CTSW
PPIA	XCL2	ARF5	TAF13	VCAM1	NA6A0


T06: 3301 cells; 6 programs

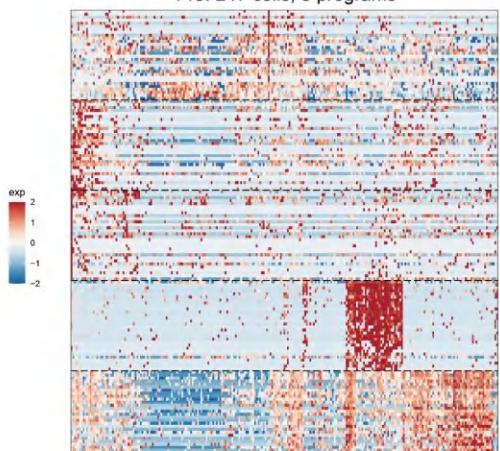
T06_1; T06_2; T06_3; T06_4; T06_5; T06_6

TOP2A	PTTG1	UBE2C	CCNB2	TPX2	CDKN3
CDC43	CDK1	HJURP	CDC20	BIRC5	MKI67
PBK	CENPF	HMMR	GTS1E	ASPM	DLGAP5
NUF2	STMN1	HMBG3	TROAP	ANLN	SPC25
AURKB	NUSAP1	CEP55	UBE2T	TUBA1B	CENPA
RPL8	RPL7	MT.ND2	UOCRB	MT.ND5	MT.ND3
C7D4	RPL12	RPL30	HLA.DQA1	FXYD2	EEF1D
HLA.DP1	PABPC1	RARRES3	EIF3E	GNB2L1	RARRRES2
B2M	MT.C02	HLA.DRA	RPL10	HLA.A	HINT1
HLA.DPB1	RPS2	RPS20	RPLP0	RPL7A	HLA.B
TYROBP	C1Q1A	SRGN	EREG	C1QG	
C4L4	GPR183	MSA6A6	TNFAIP3	IL.1B	CCL4L2
APC01	NLRP3	LAPTM5	REL	PLEK	RGS1
DUSP2	FAM26F	TMSB4X	LST1	MS4A7	DUSP4
FCER1G	AIF1	PTPRC	CCR7	TCHH	CSF1R
C2L2	KDM6B	CE52	PDK1IP1	PLEKHA1	YBX3
H3F3B	MIDN	PFKFB3	SOD2	MIR22HG	BSG
ZFP26L1	TNFRSF12A	ODC1	MCL1	NEAT1	NAMPT
LMNA	ETS1	HMGN3	PTRF	FOSL2	CITE04
ITGB3	ANGPTL4	AHNAK	TNFRSF21	NFL3	MAP2K3
TSRAN1	CDHR5	CES2	PDK1IP1	CVBSA	NAT8
AMN	KRT18	SMIM24	AOC1	PCSK1N	TMEM176A
LGALS2	ECH1	TMEM176B	CXL14	AKR7A3	BSG
KHH	SLC245	ACSM2B	HLA.DRB1	TM4SF5	SLC6A13
ITM2B	ACAT1	MGST1	ADIRF	HSPE1	PEBP1
RPL18	RPL13A	RPL36	RPS27	RPLP2	RPL21
RPL9	RPS16	RPL13	RPS3	RPL19	RPS18
RPS25	RPS13	RPL27A	RPL18A	RPL5	RPS5
RPL15	RPL38	RPL23A	RPM1	RPL3	RPS27A
RPS6	RPL35	RPL11	RPS3A	RPS14	RPS23


T11: 845 cells; 5 programs

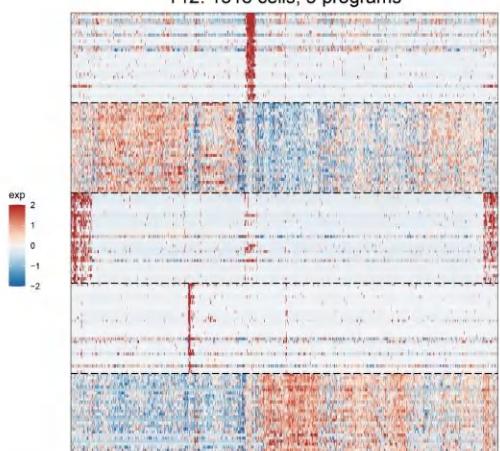
T11_1; T11_2; T11_3; T11_4; T11_5

PDZK1IP1	CYB5A	ATP5MC3	CXCL14	PDK1N	CLTRN
KHK	UQCRCQ	SMM24	HINT1	DEFB1	TRIM54
GPD1	GAL3ST1	AZGP1	COX6A1	SLC23A3	ADIRF
SLC5A12	SLC39A5	TNFRSF12A	TSPAN1	NAT8	GPX3
GSTK1	UQCRC10	SLC37A4	COX5B	CUBN	CYB5R3
CD3E	TMSB4X	SGRN	ARHGDIB	ZFP36L2	HCST
CORO1A	PTPRCAP	IL2RG	CD52	HLA C	CD37
CD3D	HLA E	CD69	JUNB	LSP1	BTG1
CYTIP	LCP1	LCK	CD2	PTPRC	CD53
ALOX5AP	EVL	CD7	TNFAIP3	CD9B	CD96
HLA.DRA	HLA.DPB1	HLA.DPA1	HLA.DQA1	LYZ	TYROBP
FN1	HLA.DRB1	C1QA	VSIQ4	HLA.DRB5	FCER1G
MSA6A	HLA.DQB1	S100A9	HLA.DQA2	C1QB	CD86
FCGR3A	C1QC	HLA.DMB	RNASE8	AIF1	C1orf162
SPI1	FGR	FCGR2B	CTSS	SIGLEC10	SLAMF8
ASPM	CENPF	PTTG1	CDC3A	MK167	UBE2T
CENPE	TACC3	CDKN3	STMN1	NMU	RRM2
PHF19	CCNB1	FAM83D	H2A.Z1	TUBB4B	PRC1
ARL6IP1	ANLN	MYH9	PRR11	TUBA1B	APOBEC3B
INCENP	UBE2C	CCNB2	PCLAF	LGALS1	LMNA
SQSTM1	ENO2	SAR51	PLIN2	EIF1	NPM1
VIM	CCNI	EEF1D	CNBP	EIF4A2	S100A6
PTGES3	UCHL1	RACK1	ALDOA	FTL	TCEA3
TCEA1	BEX2	PCBP2	NOP53	RBCK1	TAGLN2
U2AF1	PSAP	EPRS1	EEF2	NUPR1	TNIP1


T13: 958 cells; 4 programs

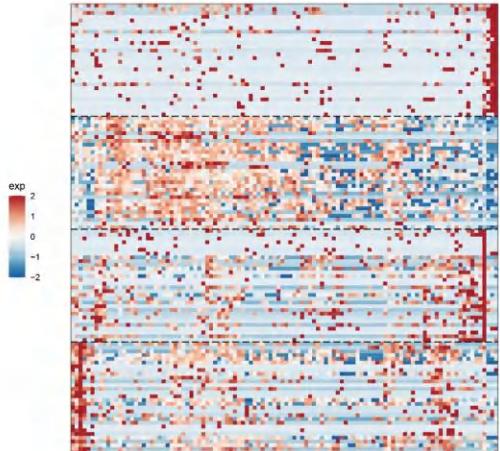
T13_1; T13_2; T13_3; T13_4

PDZK1IP1	HINT1	COX7C	ANGPTL4	PPIB	GAPDH
ATP5MC3	TRABD2B	ALDOA	MIF	DEFB1	COX5B
CD151	MGST1	PRELID1	TNFRSF12A	S100A1	COX6A1
NNMT	ALKAL2	CXCL14	H2A.Z1	TUBA1B	S100A10
CA12	ADIRF	MLEC	AQP1	TMEM176B	HSPB1
C1QA	C1QB	APOE	C1QC	TYROBP	HLA.DPA1
HLA.DPB1	RNASE1	HLA.DRB1	HLA.DRA	HLA.DRB5	CST3
S100A8	GPX1	FTL	CD74	FCER1G	AIF1
TMSB4X	HLA.DQB1	GRN	MS4A6A	HLA.DQA1	LAPTMS
C1orf162	PLTP	APOC1	TREM2	LYZ	S100A4
PTPRCAP	CD3E	BTG1	TMSB4X.1	SIRPG	CD69
CST7	JUNB	SLAMF1	P2RY10	CD52	SRON
HLA.C	LCK	ZFP36L2	DUSP2	CD2	MEI1
CD3D	ARHGDIB	KLRB1	GZMA	CD7	CYTIP
NKG7	TMIGD2	CD8A	SPNS3	CORO1A	CD27
HMMR	PTTG1	CCNB1	BUB1B	CENPF	CDC20
H2A.Z1	PIMREG	UBE2S	CKS2	CDC25C	MK167
PCLAF	BUB1	CCNB2	TRIP13	TUBB4B	ARL6IP1
ASPM	STMN1	CDC48	TPX2	OIP5	CDCA3
TROAP	KIF20A	PRR11	FOXM1	PLK1	HMGN2


T15: 247 cells; 5 programs

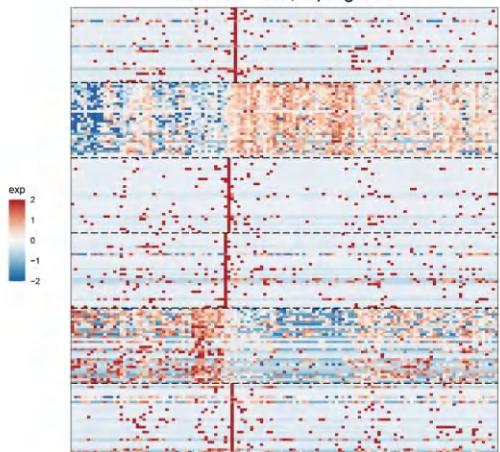
T15_1; T15_2; T15_3; T15_4; T15_5

TM4SF1	AKR1C1	AKR1B1	SERPINE2	HMOX1	AKR1C3
PRSS23	PYGL	NQO1	ATP5MC3	ATP5F1C	MAL2
TXN	ANXA2	ANXA5	WLS	SLC25A5	AHCY
G6PD	ACTG1	TUBB	COX5A	CHD1L	DERL3
NDUFA4	PRDX5	PPIA	FTL	FTH1	ATP5MF
SLC3A1	MSLN	LINC01320	NAT8	BAAP2L2	RDH5
RNF186	METAP1D	CDH95	PDZK1	NBP1F1	FCGR2T
EFNA1	TMEM176B	BBOX1	KCNQ10T1	PCK1	ZNF639
ATP1B1	SLC23A1	RTNA	TMEM176A	CNTNAP5	CCN1
UGT2B7	STX16	APLN	KHK	SLC5A1	FAM13A
CA12	VEGFA	NDRG1	MT1X	DEP1P1	TGFBR2
SERPINB9	MYEOV	PLD2	SEMA4B	SOX4	SYCE1L
LGALS1	FCAMR	MT2A	ANGPTL4	KLF13	ITK
TNFRSF1B	GMEB1	MDC1	MGLL	TNS1	ARRDC2
TMBSB10	CMTM3	SREBF2	C16orf74	F2R	IGFBP3
TMBSB4X	CD3E	PTPRCAP	NKG7	PTPRC	RAC2
CST7	CD8A	CD27	CORO1A	C3D	GZMK
HCST	GZMA	CD2	CXCR3	LAPTMS	GPSM3
LSPN1	ARHGDIB	CTSW	SIT1	TRAF3IP3	RGS1
PRF1	SH3BGRL3	LCP2	LCP1	ITM2A	ITG4
HLA.DRB1	HLA.DRB5	CD74	VCAM1	HLA.DQA1	C1S
HLA.A	SYNGR2	CD151	HLA.C	PDI6	MAL
CFB	HLA.B	HLA.DRA	TAP1	SERPING1	CLU
IL18BP	HLA.DQA2	SERPINA1	CTSS	HLA.DQB1	C3
WARS1	SPINT2	FN1	TNFSF10	HLA.DPA1	PSAP


T12: 1318 cells; 5 programs

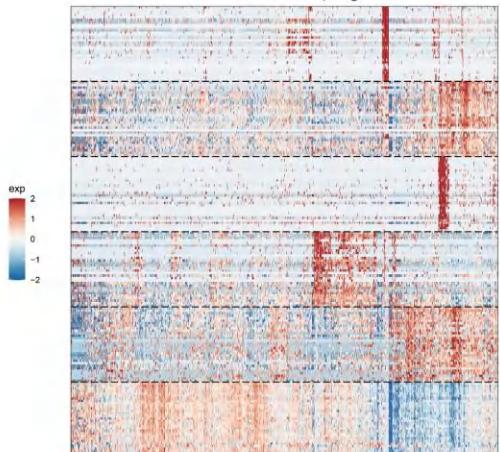
T12_1; T12_2; T12_3; T12_4; T12_5

HLA.DPA1	TYROBP	HLA.DRA	HLA.DPB1	MS4A6A	AIF1
HLA.DQA1	HLA.DRB5	FGR2B	C1QC	HLA.DQA2	HLA.DQB1
HLA.DRB1	C10orf162	FCER1G	RNASE6	MS4A7	C1QB
IGSF6	FGL2	CTSS	LYZ	FCER1A	PLD4
LAPTMS	CLECT7A	CALHM6	C1QA	DOK2	CD1E
VIM	NPM1	DUSP1	TNIP1	CCNI	ENO2
PCBP2	TAGLN2	CNBP	EEF1A1	EEF2	
SQSTM1	RHOB	NOL3	S100A6	UBC	CAV1
HSP90AA1B	RACK1	EIF4A2	TGFBI	GLUL	EFEMP1
TCEA3	EIF3L	CPE	ANXA4	NOP53	PKM
CD69	PTPRCAP	CD3E	CD3D	CD96	XCL1
CD2	ARHGDIB	CD8B	CD52	IL2RG	CD8A
XCL2	LCK	BTG1	KLRD1	CD7	RGS1
CORO1A	EVL	ASPM	SPOCK2	KLRB1	TMBS4X
HOPX	TBC1D10C	SLAMF4	CD3G	LTB	TMIGD2
PTTG1	PIMREG	CENPA	KIF20A	CENPF	CDKN3
BIRC5	DEPD1	PLK1	CDC20	MK167	CCNB2
CCBN1	CDC43	CDC25C	CEP55	TOP2A	HMMR
H2A.Z1	UQCRCQ	CYB5A	NAT8	COX411	GSTK1
CXCL14	PEBP1	MS4A7	COX5B	GSTA2	
PEPD	COX6A1	SLC39A5	SLC5A12	COX5B	
KHK	ANPEP	ASPDH	UQCRC10	AQP1	TMEM174
GPX3	DDT	AKR1A1	ATP5PF	CLTRN	TRIM54


T16: 108 cells; 4 programs

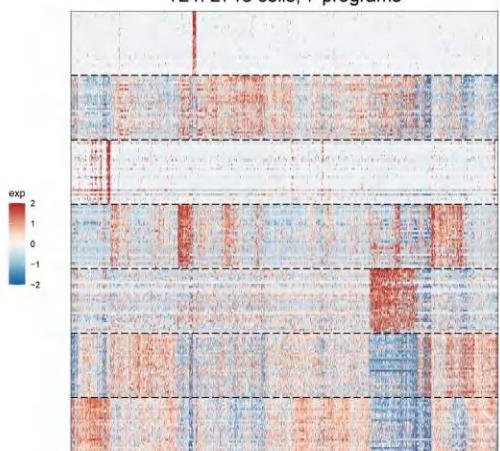
T16_1; T16_2; T16_3; T16_4

FUS	KLF6	SULT1C2	SLC25A16	PUM2	NFIB
RHPN2	BHMT2	YPEL2	ACSM2B	ADAMTS9AS1	EXOC4
FNDC3B	CCNL1	SORBS2	LIFR	PKN2	TIPARP
RBMB6	RALGAPB	DST	ACSM2A	IFRD1	TTC14
PTPRK	SRSF1	NUMB	BLNK	SELL3	LINC00937
FXYD2	ATP5MC3	COA3	UQCRCO	NDUF53	NCBP2A52
TMEM14B	ATP5MC1	COX5A	ATP5PB	COX7B	ATP5F1C
NIPSNAP2	MRPS26	C4orf3	UOCR11	UOCRB	FABP3
LDHB	CRYAB	NDUFB5	DLD	FAM162A	PRDX2
CYB5A	TMEM256	RBP5	CYC1	ALDOC	COX411
APOC1	APOE	C1QA	TYROBP	C10C	C10B
FCER1G	HLA.DPA1	SAT1	HLA.DPB1	HLA.DRA	MS4A6A
CD74	LYZ	RGS1	HLA.DRB5	CXCL13	TMSB4X
HLA-DMA	HLA.DRB1	GBP5	ZFP36L1	HLA.DQB1	SRGN
FXYD5	NPC2	PDK4	CELF2	HLA.DQA1	CTSW
UCHL1	LGALS1	ANXA2	SQSTM1	YWHQA	S100A10
MYEOV	MCUB	S100A11	PHLDA2	CAP1	STIP1
PSMB10	CAV1	BID	PKM	S100A6	ISG20
GBP1	PSMD13	TALDO1	LMNA	SLC35A4	IDO1
WARS1	PFN1	VAMP5	VIM	S100A16	BCAP29


T27: 262 cells; 6 programs

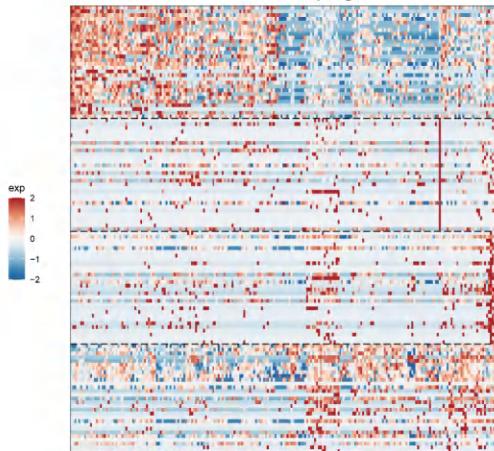
T27_1; T27_2; T27_3; T27_4; T27_5; T27_6

FBXO30	TMEM79	RP11.354K1.1	DNAJC18	C6orf203	UGT2B7
KIAA1586	BATF3	KDM1B	ALS2	BINP1	PVRL3
ASAP3	FAM43A	RP11.359P5.1	FGA	CD55	IL1RL1
ZBTB49	LPN1	CUL9	RP11.1C1.4	RP11.326H11.3	RP3.395M20.12
LEPROT	RP11.232P20.1	DNAJB11	CCBL2	CTC338M12.5	ZC3H8
RP53A	EEF1A1	RPS1	RPL11	GNBL21	HINT1
RP518	RPL5	RPS12	RPL23	RPL3	MARCKSL1
BTF3	RPL10A	NPM1	EEF1B2	RPL9	RPL34
RPL14	RPL32	HMGN2	RPL37	RPS27A	SRP9
RP514	RPS7	NDUF55	HIST1H4C	RPL24	CDCD148
LGALS1	PCP1	MAL	CNOT10	LRRN2	RP11.545E.3
DIRC3	CCDC30	KCTD18	RP11.488L18.10	RP5.864K19.4	ISY1
SNX18	SPRED2	CISH	MRP59	HOXD.4S2	ZBTB49.1
RARES1	E2F6	C3orf58	ATAD3A	ATAD3B	LRP11
ACY1	ENAH	KDM5B	CTB178M22.2	HS2ST1	RP11.490M8.1
SST	TRAF3IP1	RP11.145A3.1	CNOT10.1	CDK7	IL1RL1.1
CCDC138	IKZF2	CDKN1A	E2F6.1	RP11.488L18.10.1	IGIP
TMEM17	C2orf74	TUBA4A	PCY11A	STT3B	HOXD1
TAF1	SPINK1	RND3	MAP7D1	NBPFL2	MAP4K3
UBE2E2	ACO2X	EGR1	HHATL	RP11.141T7B.3	AH1
ENPEP	ATP1B1	CHPF	SLC6A3	CP	DPP4
F5	AC074289.1	LPCAT1	KCNK3	QSOX1	KIAA1244
SLC36A1	TGFA	ELK4	ADAMTS4L	CXCR4	NRP2
NBL1	MICAL1	LRRK41	NIPAL3	VEGFA	ECE1
SLC12A7	MST1	CER52	AGRN	C6orf106	TNS1
IDH1A51	CAPG	KALRN	SLC1	AC07935A.2	LAPTM4A
FBXO30.1	FHL2	ANKRD31	RIOK2	ABRACL	C4orf6
ZKSCAN4	WWC2A.2	GCA	NMMAT1	DBT	ANP32E
PSORS1C1	PEX13	CYB5R4	OSGEPL1	PPP1R7	B3GALT4
EFNA4	CEP57L1	FDPS	TSPN1	DNPH1	NAT8


T32: 1683 cells; 6 programs

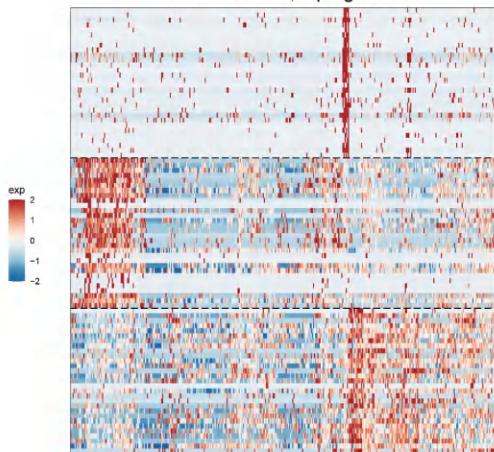
T32_1; T32_2; T32_3; T32_4; T32_5; T32_6

LAPTM5	FCER1G	C1QC	C1QB	C074	
HLA.DPB1	LST1	STAB1	HLA.DPA1	HLA.DQA1	IL1B
HLA.DRB1	TREM2	HLA.DRA	HLA.DQB1	CD84	HLA.DQO2
HLA.DR5	AIF1	S100A4	MNDA	C1orf162	FCGR1B
FAM19B	HLA.DMB	RGS1	FGR3A	HCL51	CD53
S100A11	ANXA3	SH3BGRL3	LAMC2	HMG1A	S100A16
CLC1	WDR1	PSMD2	TAGLN2	ANXA5	ACTR3
YWHAQ	HBEGF	S100A10	UCHL1	S100A6	SFN
PROX1	PNPLA1	PLK2	IL8	ARPC2	MAL
SSR3	CALM2	TPM3	PREL1D1	HNRNPAB	YBX1
GSTAT1	NUF2	HJURP	CDC20	CNCNA2	CENPF
C1orf20	HAO2	AGMAT	GC	FM01	MPC2
PDK1	KHK	APOM	ALPL	AC009014.3	DNPH1
SLC23A1	PLCH2	DAB2	AKR1A1	ACMSD	AC077
SMPLD3A	LAMTOR5	HMGN3	BHMT2	HSPE1	SLC3A1
AGRN	IGFBP7	FAT1	FSTL1	ITGAV	SPTBNT1
CDH6	DST	VEGFA	TNFSF10	MACF1	CP
ATP13A3	PXDN	MUC1	LAMA4	CLDN1	KCNK3
LOX	SLC2A1	CRIM1	HLA.A	HSPG2	TAPBP
GOLGB1	LPCAT1	LAMC1	SLC3A2	TRABD2B	EIF4G1
RP53A	RPS27	RPL9	RPL10A	RP88	RP15
EEF1A1	BTF3	RPS23	RPS14	RPS27A	RPL14
RPL32	RPL35A	CCNI	RPS18	RPL24	RPL15
RPL29	NPM1	RPL11	RPL34	GNBL21	RPL22
CNPB	DUSP1	RPL37	RPL37A	EEF1B2	EPB41AA. AS1


T24: 2718 cells; 7 programs

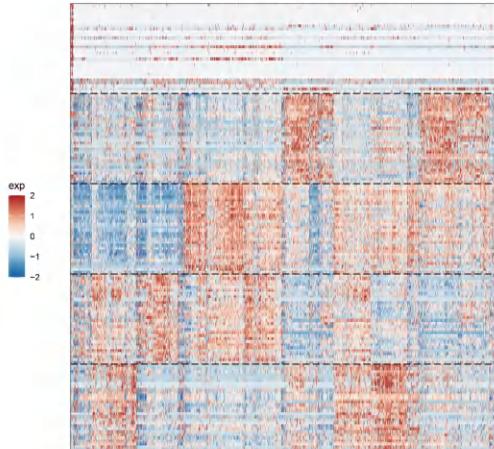
T24_1; T24_2; T24_3; T24_4; T24_5; T24_6; T24_7

CD8A	NKG7	C03E	GZMK	C03D	
PTPRCAP	IL2RG	FVB1	C2D7	C5T7	HCS1
LTB	CD53	CTSW	CD2	GMFG	CORO1A
PTPRC	CD8B	CD37	ARHGDI8	CD3G	CD7
LCP1	HAVCR2	CD52	GZMH	DKO2	
EIF1	FTL	FT1	GABARAP	PPBP15A	PCBP2
PTG1	CDNF	ASPM	KIF20A	CDK6	BIRC5
HMPR	TPX2	CD192	CCNB1	CD220	
NUF2	NUF2P1	PMREG	NTR2	CD36	TK1
CDCA3	PBK	CDKN3	KIF14	TOP2A	STMN1
CKAP2L	H2A21	HJURP	UBE2T	CENPE	TRAP1
OAS1	MX1	OASL	IFI35	ISG15	RSAD2
MX2	LY6E	IFTM3	IFI6	IFI11	IFITM2
SAMD9L	UBE2L6	ISG20	PSMB9	IRF7	IFI27
IFT13	TRIM22	TNFSF10	DDX58	PLSR1	ETV7
XAF1	SAMD9	IFT12	VAMP5	OAS2	GBP4
EEF1A1	TP1	CRYL1	C3	PTMA	PLCB4
RBP5	CLU	COMMID6	P3H2	HNMT	HSF90AB1
BGN	EEF1D	SLC38A1	GLU1	RARRES1	PELO
CD74	EEF1G2	ANP3B	ITM2B	CRYAB	NOP53
NWKL	MAP3K2CL	MID1	VM	IGFBP7	EEF1B1
DGELD2	VGAA	CDK6	M1P	DCDC2	TRD
LRP1	MACF1	NAV1	SLT3	FAT1	
COL21A1	MYOF	AHNAK2	DST	CD81	EPHA7
DDX17	AHNAK	GLS	PLOD2	WWT1R1	MTRNR2L8
ATP2B4	ANO6	MTRNR2L12	ITGA3	MRTF1A	AKT3
AC18	CF1-L	PFN1	RAN	PKM	TNFRSF12A
S100A16	EIF5A	HINT1	SLC25A5	ANXA2	ARPC2
ACTG1	PGM1	MYL12A	CSR1	ATP5MC3	SLC25A3
COX5A	CNN2	SYNGR2	VAD1	RHOA	S100A11
MYL12B	SLC9A3R1	YIF1A	TUBA1B	SH3BGRL3	MYDGF


T33: 435 cells; 4 programs

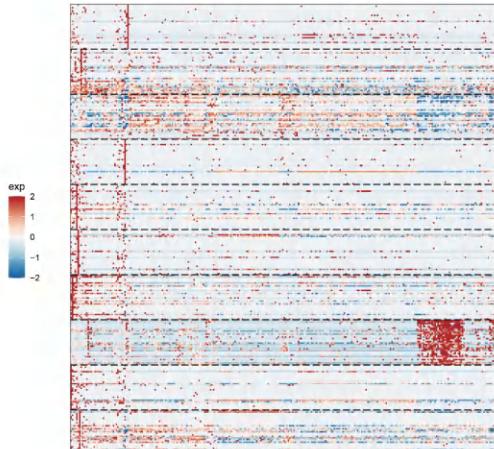
T33_1; T33_2; T33_3; T33_4

HLA.DPB1	CXCL2	CD74	DUSP1	NFKBIZ	HLA.DPA1
HLA.DRA	EGR1	SPON2	FNIP2	HLA.DRB5	FN1
HLA.DRB1	IER3	CCNL1	JUN	PTMA	EBF1
SLC29A1	HLA.DQA1	CTSK	ATF3	BTG2	PPAP2B
TFPI	HLA.E	IRF1	HLA.DOA	FOSL2	GLUL
S100A9	UCHL1	MYO1B	SV2A	MAST2	KNG1
ATP1A1	AC123886.2	MXRA8	RP11.782C8.2	TTC4	PTH2R
SOSTM1	GALNT5	KLHD3C	PIGR	CDKN1A	TPD52L1
CLDN19	PAPP2	RP1.223E5.4	HCN3	CLIC1	SHROOM3
WHSC1	RP11.624M8.1	RP11.367M14.2	APLF	RP11.15F17.1	X15.Sep
SEMA3F	GPX3	STK39	RP4.543J13.1	PDZK1IP1	PLCD4
RP11.10L7.1	CYTL1	GALNT14	RP5.1092A3.4	DAB1	RHOU
PAPPB2.1	MTRNR2L12	YOD1	LRP2	PRLR	TNNT2
VCAN	ZBED6	F2RL1	SENP5	USP46.AS1	CPOX
MFAP3L	OSBPL11	CCSAP	KCNAB2	SPDYA	PLCL2
S100A10	PRDX6	RPL14	SEMA4A	AC073218.2	RPL5
RPL24	NPM1	EIF4A2	ATPIF1	PPP1R3G	HIGD1A
PTGER3	BRINP2	SST	VEPH1	SPAG17	TMEM171
RP1.60O19.1	NGEF	PDZK1IP1.1	SH3D21	KIF6	KLHL20
RP58	FYB	RPL9	OVGP1	SLC15A2	RPL11

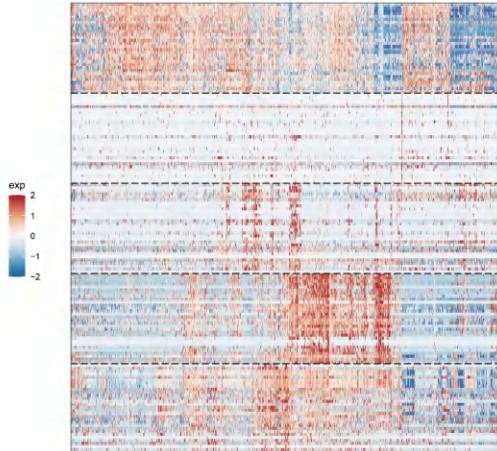

T42: 391 cells; 3 programs

T42_1; T42_2; T42_3

LDB2	SLCO2A1	SLC9A3R2	FCN3	TP53I11	CYR1
GFOO1	SH3PXD2A	FLT1	SPARC	PLVAP	RBP7
THBD	RAMP3	NOTCH4	MMRN2	RAMP2	ESM1
VWF	TMEM88	RNASE1	TIMP3	RGCC	CASP10
KDR	FAM167B	RAPGEF5	CD93	EGFL7	GIMAP7
<hr/>					
NAT8	MIOX	GPX3	GSTA2	AMN	SMIM24
PEBP1	BBOX1	SLC5A12	PPP1R14D	PDZK1	SLC16A9
PDZK1IP1	KHK	GSTA1	APOM	ACSM2B	AQP1
FTL	C1orf210	CYP4A11	MPC2	ANXA4	TMEM174
AL139246.5	ALDOB	AGMAT	GAMT	CYB5A	CDHR5
<hr/>					
CXCL11	SOD2	RRAD	VIM	HLA.C	MT2A
IRF1	RPS2	ICAM1	TAP1	HLA.B	NFKB1A
GBP2	LMNA	BIRC3	FAM107A	HLA.A	TM4SF1
ETV7	UBE2L6	TAGLN2	CAV1	MT1E	CD74
TYMP	TAPBP	HLA.DRA	PNRC1	C1S	FSTL3

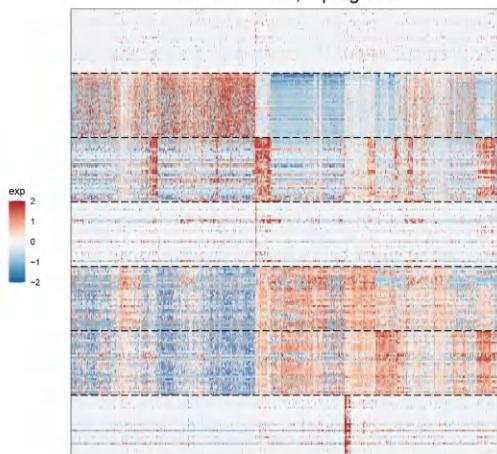

T43: 3036 cells; 5 programs

T43_1; T43_2; T43_3; T43_4; T43_5


EPO	PTN	PTGIS	SCNN1B	PART1	FAM180A
CLDN11	ARG2	PGF	IGF2:1	TNNT3	FABP5
NID2	IL6	IGFBP5	GRMB	CFH	SCNN1G
FRZB	MIAT	EDIL3	PAX5	AC091946.1	NPPC
BMPR1B	GNAS	WFC2	COL6A3	FABP7	EGFL7
<hr/>					
EEF1A1	RNF5	LINC02532	SNX3	CLIC1	EZR
RPL35A	CD24	IMP2	LGALS2	CUTA	SMIM24
GLUD1	DNPH1	TNFSF10	RCAN2	TXN	TINAG
NAT8	CLDN4	MYL6	PEPB1	SLC22A2	PLEKHA1
SERP1	AMD1	SARAF	RPS18	ADIRF	PNRC1
<hr/>					
ZFP36	JUNB	ATF3	IER2	EGR1	SERTAD1
BTG2	CRYAB	SOCS3	FOSB	IRF1	LMNA
JUN	UBC	MAFF	RHOB	DNAJB1	MCL1
DUSP1	CEBPD	PPP1R15A	HSPA8	FOS	KLF6
XPB1	HSPB1	GAD46B	FAM53C	UBE2S	HSPA5
<hr/>					
ANXA2	MMP7	TIMP1	LGALS1	GAPDH	C1R
IGFBP7	C1S	CD44	EMP3	TUBA1B	VIM
IFITM3	S100A13	SELENOM	CAV1	FTH1	CST3
PKM	TGFBI	S100A11	SERpine2	RPLP1	TAGLN2
S100A6	C3	TMSB10	RAB13	CTHRC1	CD151
<hr/>					
AMN	CES2	PDZK1P1	SLC5A12	AGT	KHK
SLC7A7	AKR7A3	SLC25A5	CALM1	MTCO1	MT-CO3
MT3	GPX3	CTSH	PRELID1	HLA-G	SERpine1A
PEPD	GPD1	ATP5MC3	HSP90AA1	DDC	MRPL41
PLIN2	PTGR1	MTND4	SLC2A5	AOC1	TMEM174

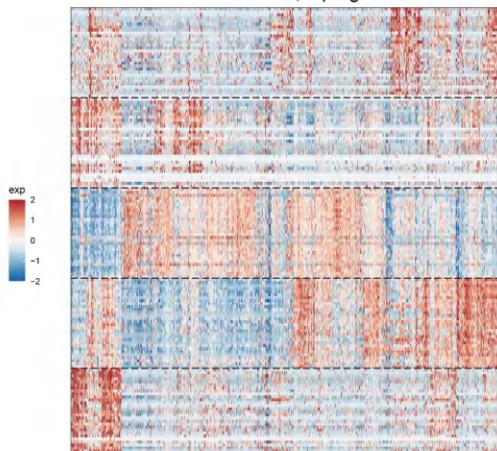
T35: 594 cells; 10 programs

T35_1; T35_10; T35_2; T35_3; T35_4; T35_5; T35_6; T35_7; T35_8; T35_9


T45: 1902 cells; 5 programs

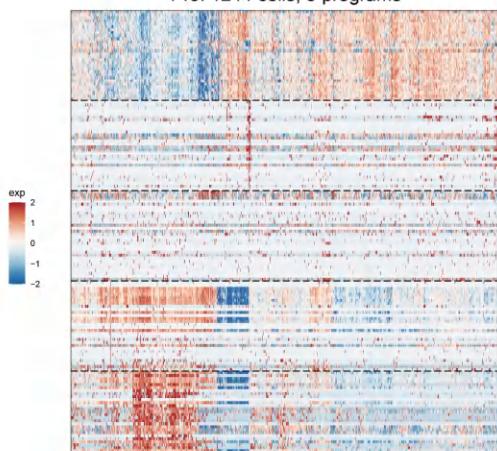
T45_1; T45_2; T45_3; T45_4; T45_5

CRYAB	ZFP36	FOSB	JUNB	DDX5	SERTAD1
UBC	MYC	CYR61	SOCS3	DNAJA1	EIF1
HSPA8	NNMT	ERGR1	MAFF	ATF3	HSP90AB1
HSPB1	ACTG1	HSPA1B	GADD45B	DNAJB4	RPS27
FOS	CDKN1A	RPL21	RPL9	HSPA1A	RPS3
SFRP2	COL3A1	COL1A2	DKK3	TIMP1	CD44
COL1A1	CPE	F2R	CTGF	SERPIN1E	COL6A2
TSPN2	COL6A3	SPARC	COL8A1	TSHZ2	CFH
BGN	EFEMP1	SEMA3C	C1R	MFSD2A	IGFBP7
MT1G	LOXL2	JMY	CTHRC1	CYP1B1	CHST7
EEF1A1	GPR137B	GNG11	VIM	RPS12	IFI27L2
ANK2	HAVCR2	PTGS1	KMO	ALDH8A1	UGT3A1
ZFAND2A	CA2	LIPC	PAH	TEX41	NPTX2
GPM6A	RPL12	QPR1	S100A13	GPK3	IRF8
MOXD1	EIF4EBP1	B2M	HPGD	SERPING1	TUBA3D
CES2	AMN	KHK	ACSM2B	CYP4A11	AGT
CDHR5	PEPD	BBOX1	SLC22A6	SMIM24	TXN
GPK4	GPD1	SLC6A13	PEBP1	PDK2IP1	APOM
CYB5A	GSTA2	SLC16A9	SLC5A12	G6PC	ASPDH
RAB11FIP3	AZGP1	MIOX	MT.CYB	ACSM2A	FBP1
AC022509.2	BIRC3	MT.C03	MT.C01	IGFBP3	MTND4
MT.C02	MT.ND3	SDC4	ZFP36L1	IL32	WTAP
SOX9	MT.ATP6	FSTL3	SOD2	MT.CYB.1	CFLAR
TPM1	PFN1	NBL1	TYMP	ATP1B1	THBS1
IFFO2	KDM6B	SET	VXN	SLC5A3	FLNA


T47: 3197 cells; 7 programs

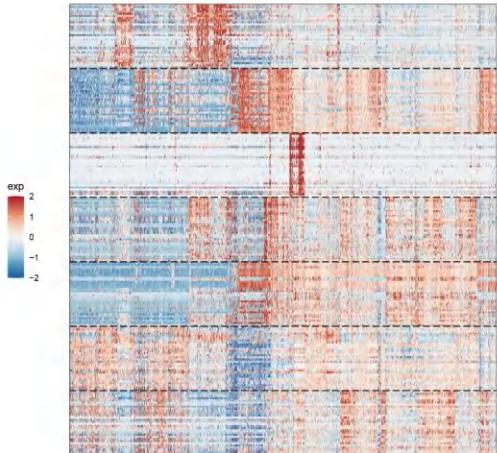
T47_1; T47_2; T47_3; T47_4; T47_5; T47_6; T47_7

DCN	MEG3	COL1A1	ITGBL1	INHBA	LUM
COL1A2	SFRP4	MXR5	SFRP2	COL8A1	THBS2
PHACTR2	ID3	FERMT1	BGN	PRRX1	COL12A1
COL1A1	TIPI3	COLEC12	RGS16	AL35612.1	SPARC
MFAP5	COMP	RAB31	OLFM2B	LINC01521	MFAP2
NEAT1	MALAT1	N4BP2L2	VMP1	P3H2	XIST
ZBTB33	ABC3	RHEX	BHMT2	PAG1	AL713996.1
ZBTB20	SLC25A37	SPINK13	MUC20.0T1	KL6	DDX17
CFLAR	PDK4	DNAH11	CPD	C10HA	MBP
PAZ3	PPBP3A	QTBP1	VEGFA	PNISB	MAST4
JUNB	FOS	JUN	EGR1	DNAJ1B1	TFPT1
PPBP15A	SERTAD1	ATF3	FOSB	GADD45B	IER2
RHOB	DUSP1	AC020916.1	HSP90A1	HSP90A1	RPL6
KLF4	ZFP36	BTG2	CRYAB	INTS6	HSP90
DNAJB4	DNAJ1A	HSP90AA1	RPL21	UBC	SERPIN1A
PiGR	CLIC6	LTF	MMP7	LINC00284	TMEM98
LCN2	CCL2	SERPIN1A.1	SAA2	ZNF667.A51	CXCL3
KCNJ15	CXCL2	CXCL1	RIPOR3	CLDN7	PHACTR2.1
IGFBP7	PROM1	VCAM1	PCSK1N	PAC5IN3	IER5
CYB51	SFRP2.1	BGN.1	SAA1	MAP7	ANK3
GSTAT1	GAPDH	SP1	RPS2	LGALS3	HP
COP9SP1	CDP2	APOL5	APL2	LGALS5	RPS10A
RPL7A	C024	RACK1	PRDX1	RPS4X	RPS3
AGT	RPL3	HINT1	AKR1B1	NMT1	SLC25A6
CLU	ATP6VO2E1	HNRNPA1	BTF3	FGG	
FTH1	EIF1	ZFAT1	VIM	RPS27	PNRC1
RPS21	RPS13	RPS12	RPL18A	HLA.C	HLA.RQA1
BTG1	CCN1	FTL	C7D4	RPL30	RPL19
RPL41	RPS21A	RPL27	PSMA7	RPL9	SGSTM1
RPS29	RPL10	HLA.B	RPLP1	HLA.DRA	RPS26
NUF2	DEPD1	CDKN3	CCNB1	NEK2	PTTG1
CKAP2L	NDC80	NCAPH	PIMREG	SPC25	HMMR
AURKA	STMN1	BIRC5	TOP2A	H2AFZ	CCNB2
SGO1	CKS2	HJURP	UBE2C	TUBA1B	PBK
CENPA	GTE1	ASPM	UBE1B	CDC48	ASF1B


T44: 1562 cells; 5 programs

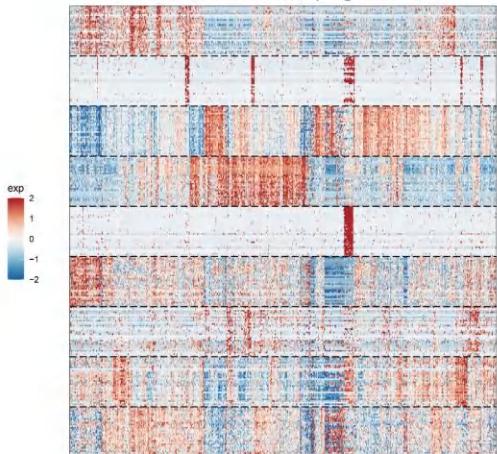
T44_1; T44_2; T44_3; T44_4; T44_5

MT2A	C11orf6	CP	MT1X	CEBPB	PNRC1
PGF	SOD2	TGFBI	NPTX2	RPS12	CDKN1A
DUSP1	IGFBP7	CTHRC1	TMSB10	RHOB	MT1F
YBX3	CXCR4	RARRES2	ELL2	STC1	NAMPT
C1R	ZFP36L1	TMEM173	BACE2	KLF4	MT1E
UBD	RARRES3	CD74	IL32	PSME2	HLADR81
HLA.B	PFN1	B2M	HLA.DQ1	CXCL11	LAP3
HLA.A	GBP4	HLA.C	HLA.DRA	TAP1	PSMB9
TYMP	GOS2	LTB	ISG20	HLA.DP1	PSME1
HLA.DPB1	SLC26A9	CTSS	GC	S100A11	AC022509.2
VIM	RPL13A	MSLN	RPS27A	RPL10	RPS3
RPL9	RPS18	RPL37A	RPL13	RPSA	RPS5
RPL11	RPL23A	RPS15	RPS24	FAM120AOS	RPL7A
PNK	RPL41	RPL35	RPL27A	RPL18	RPS2
RPL14	BST2	RPS8	RPL18A	FAU	RPS28
HSPA8	DNAJB1	BAG3	DNAJA1	HSPA1B	HSP90AA1
SERPIN1H	HSPA1A	HSPB1	FOSB	HSPD1	HSPH1
ZFAND2A	CRYAB	EGR1	HSPB1	HSPA5	PPP1R15A
DNAJB4	ATF3	ZFP36	MAFF	UBB	FOS
JUNB	BTG2	ACTG1	HSP90AB1	ACTB	MCL1
NAT8	ACSM2B	LGALS2	KHK	HMGN3	BBOX1
AMN	CYB5A	APOM	UQCRC2	FABP7	SMIM24
ACP1	GSTA1	BSG	MT.C02	AGXT2	SLC22A2
MT.C01	OC1AD2	SLC6A13	GSTA2	CUBN	RDH12
COX7C	MIOX	CXCL14	GSTP1	DAB2	PDZK1IP1


T46: 1244 cells; 5 programs

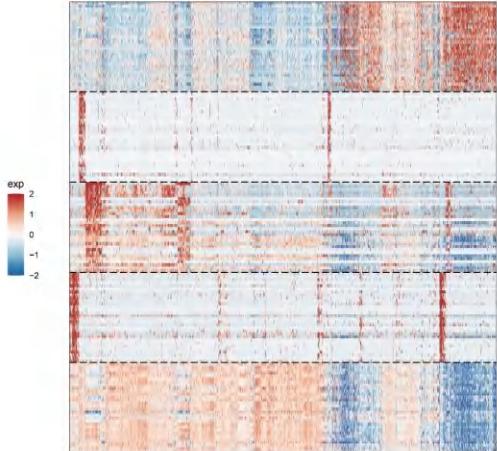
T46_1; T46_2; T46_3; T46_4; T46_5

SERTAD1	RPS3A	RPS3	FTH1	RPL7	RPL21
RPL11	RPS27A	RPL9	RPL8	ZFP36	CRYAB
EIF1	MYC	RPS4X	RPL23A	RPS5	RPL18
RPL13A	RPL41	RPL16A	RPL10	RPL5	JUNB
RPS27	RPS14	RPL3	RPS6	RPL13	RPL30
SFRP2	MMP7	COL1A1	COL6A3	COL1A2	TGFBI
PHLDA1	COL6A2	DKK3	TMEM100	CTHRC1	MT2A
ANKA2	LOXL2	BACE2	DERL3	CND2	CYBA
MYL9	PHLDA3	PP1C	LGALS1	FHL3	TPST2
LOXL1	PDLIM7	BGN	FSCN1	SPARC	ARHGEF2
IGLC3	IGHG1	IGHG3	SH3BP5	M2B1	CELF2
ZP1	ITGB7	IGHG2	DERL3	CND2	CYBA
ARHGEF3	SPPI1	SRGN	GJB2	FKBP11	CCL20
P2RX5	PNO1	RECOL	BIRC3	CST6	SMAP2
ME1	IGHG2	QPCT	IGF1	TPS15	FSTL3
PTGS1	AC13644.2	MT.ND4	MT.ATP6	MT.ND1	MT.C03
MT.C02	MT.C01	C3	RILPL1	MT.ND3	PCLAF
MT.CYB	MT.ND2	PCSK1N	CUL9	MT.ND5	NKX3.1
LRRC8D	SLC6A3	C1QL1	VEGFA	LDRAD3	ADGRG6
C16orf74	ZNF516	PHKA2	ALKAL2	MT.ND4L	SCD
MT.CYB.1	AMN	MT.C01.1	MT.C03.1	KHK	MT.C02.1
CYBA411	CDHR5	AQP1	SLC22A6	MT.ND4.1	APOM
SMIM24	TNX	NAT8	CES2	ACSM2B	AZGP1
CYB5A	GPX4	PDZK1IP1	TM4SF5	CUBN	MT.ND5.1
MIOX	SLC6A13	MT.ND2.1	MT.ND3.1	TSPAN1	KRT18


T48: 2815 cells; 7 programs

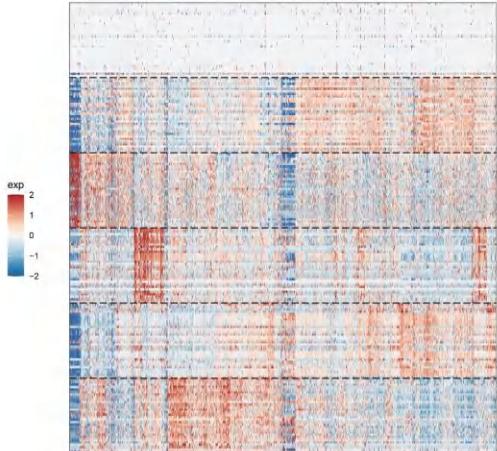
T48_1; T48_2; T48_3; T48_4; T48_5; T48_6; T48_7

CD74	HLA.C	PSMB9	B2M	ZFAS1	HLA.B
EIF1	MDK	PNRC1	HLA.DRA	NUPR1	SELENOM
HLA.DRA	HLA.DQB1	HLA.A	IL15RA	TAP1	HLA.DPA1
HLA.DPB1	IL32	ATF4	OPTN	S100A6	CD44
HLA.DRB1	FTH1	RARRE3	RPS27	CEBPG	UBE2L6
CP	C1R	CLU	AGT	LSP	SPPI
SERPINF2	MTATP6	CTSD	HSP90B1	AGP3	MTND4
CSPN	LGA53BP	PLD02	PDIA3	ANGPTL4	MTND2
FGF	PP4B	MCF2	CYBA	APP	APP
MTC03	SLC16A3	GS001	MTND3	MTND1	MTND2
PTTG1	CCN61	CCN61	MTND1	MTND1	DEPOC2
H2AFZ	BIRC5	DLGAP5	CDC20	HMMR	DEPOC1
NUF2	GTSE1	TOP2A	PIMREG	CDKN3	STMN1
MXD3	PLK1	PBK	UBE2C	TPX2	ASPM
ECT2	HMGB2	MK167	CDC2A5	CNB2	UBE2S
DNAI1	BAG3	HSP90AA1	TUBA1B	HMGN2	NEK2
ZFAND2A	HSP90A1	PPP1R15A	HSP90A1	EGR1	EGR1
DNAI4	DEDD2	JUN	MRPL18	FOS	HSP6
HSPH1	CRYAB	ID2	DDIT3	SOCS1	BTG2
SERTAD1	SERPINH1	PLK2	GADD45B	ATF3	UBB
MTND3	MT.CC01	PTEN	ATP6 1	MTND1	MTND1
MT.CC01	CBP2	NFKB2	MTND2	MTND3	MTND1
HIPK2	CPO	TNF.AIP3	MT110r96	CXCL8	IER6
MT.ND4L	SDC4	LPP	NETO2	ERRFI1	MTND5
EGRI1	FOSB	KLF6	MAFF	VMP1	RYBP
GAPDH	S100A10	ACTG1	LGALS1	CAV1	VIM
TMSB10	S100A11	RPS14	RPL7	LDAH	ANXA2
PIPIA	RPL10A	ENO1	RPL10	C10orf99	RPS3A
RPS27A	BTF3	TUBB	TGFBI	RPL19	RPS18
HNRNPA1	NDUFA4L2	MYL6	RPL5	YBX1	CLIC1
GST42	TRIM54	LGALS3	GSTA1	GAMT	LGALS2
HINT1	XYD2	CYB5A	ARG2	RBP5	GAPDH1
AGXT2	CALM1	PDZK1	ASGR1	TXN	RACK1
SMIM24	ACMSD	MPC2	USH1C	CMBL	ANXA4
APOM	UQCRC2	FBXO25	TMEM16A	LDBH	KHK


T59: 866 cells; 9 programs

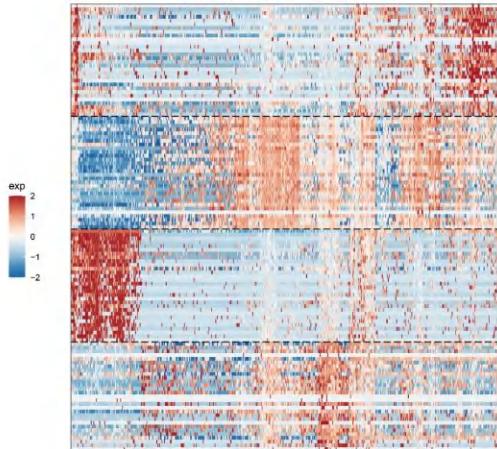
T59_1; T59_2; T59_3; T59_4; T59_5; T59_6; T59_7; T59_8; T59_9

CYP4A11	TMEM174	PLG	PCK1	APOM	SLC22A6
ALDOB	AZGP1	SMIM24	SLC5A12	PEPD	BBOX1
AGXT2	CES2	GSTA2	GPD1	AGT	AC52B
IMCNP2	ANP1	ASPH1	K10	COD5	MIOX
AKR7A3	ALDH1A1	SUSD2	KPX3	TMBIM6	G6PC
CD3G	PTPRC	FCST	CD2	COL5A1	CD3D
THEMIS	CD3G	ACVR2A	ACVR2A	CDP1	CDP1
PYHIN1	AKNA	EMB	NKG7	G2MM	ARHGAP30
CYTH4	AKNA	GNLY	CD84	CD48	TRG.AS1
PTEN	AKNA	RPL30	FAU	RPS2	ZFAS1
TYROBP	AKR7A1	RPL5	RPL18A	RPS24	RPS4X
EGFL7	AKR7A1	RPL18A	RACK1	RPL18	RPL18
PTGDS	VWF	RPL18A	RPL18A	RPL28	RPL28
PLA2G12A	CDP1	RPL19	RPL19A	RPL28	RPL28
NEA1	LRP2	RPL21	RPL21	RPL28	RPL28
ZBTB20	MALAT1	SYNE2	N4BP2L2	XIST	XIST
AGXT2	S100A10	AKR7A1	M4BP2L2	VEGFR3	ATP11A
TNS1	SERIN1	MTND3	CANX	DNMT3A	VEGFR3
MT.CYB	CMV5	ENPEP	VMP1	DNMT3B	ATP11A
CANX	ENPEP	IGFBP3	IGFBP3	DNMT3B	MAMLL2
C11orf96	ENPEP	IGFBP3	IGFBP3	DNMT3B	SLC8A1
PHLDA2	FSTL3	IM35	PLP2	DNMT3B	ENFA5
ADY1	S100A10	LMNA	TPM1	DNMT3B	TNFRSF12A
SYN1	AKR7A1	LAP3	U2AF1	DNMT3B	TNFRSF12A
YIPF9	RARRE3	CXCL6	HLA.DOT1	DNMT3B	TNFRSF12A
IL32	CXCL6	ISG20	HLA.DRA	DNMT3B	TNFRSF12A
CD74	WARS	HLA.G	HLA.DRB1	DNMT3B	TNFRSF12A
HLA.C	HLA.DRB5	PSME2	UBE2L6	IFI27	SECNM1
HLA.A	SLC17A3	GPB1	UBE2L6	IFI27	PKC1
NAT8	GPAM1	TPH1	UBP8	ATP5MC3	ATP5MC3
PRDX4	GSTP1	TPH1	MIF	CLTRN	LDHA
COX7A	OST4	TPH1	TPM1	TM4SF18	DNP11
ATP5MC1	LEPROT	TPH1	TPM1		
	NDUF5				


T60: 3365 cells; 5 programs

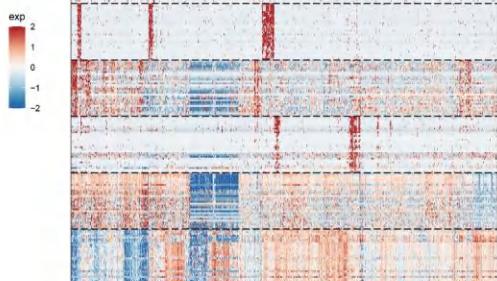
T60_1; T60_2; T60_3; T60_4; T60_5

MALAT1	MME	DDX17	KCNQ10T1	NABP2L2	HNRNPU
PNISR	NEAT1	POLR2J3.1	VEGFA	SLC7A2	CADM1
RBM39	PRRC2C	WSB1	FTX	PAX8	VMP1
GLS	PLEKH1	FNDC3B	FAM13A	ZBTB20	MUC20.0T1
LINC01320	SLC5A3	BICD1	CA12	LPP	MTR
PTPRC	PDCD1	NKG7	CD2	TRAC	CD3E
CORO1A	C027	TRBC2	EOMES	SPOCK2	CD3D
S100A4	CCL5	CD96	GZMK	CCL4L2	CCL4
SRGN	RAC2	PRF1	TNP13	GIMAP6	SH2D1A
FYB1	SIT1	C6D	RGS2	CDBA	DOK2
TFF3	IER2	ATF3	JUNB	FOS	NRN1
SERPIN1A	CXCL6	DUSP1	IGFR1	IGBP2	BIG2
SMIM10	RPS8	JUN	IGF2.1	FRZB	JUND
RPS24	RPS23	CXCL2	RPL7	TNXB	TFF1
RPS26	RPL3	CLDN11	PPP1R15A	RPL23A	RHOB
CCNB1	TPX2	NUSAP1	HMMR	PTTG1	CENPA
TOP2A	AURKA	CCNB2	MK067	CENPF	KIF20A
PIMREG	BIRC5	UBE2S	GTSE1	CEP55	ASPM
KIF14	CKAP2	UBE2C	TUBA1B	KIF23	NEK2
NUF2	BUB1B	TRQAP	CDK1	CDC43	KIF20B
GAPDH	RPS13	RPS3	FTH1	LDHA	RPL35A
RPL21	TPT1	PFN1	TPH1	RPS12	GFX4
GSTP1	RPL18A	RPLP1	RPL10A	LGALS3	FAU
S100A10	RPS25	RPL10	RPL15	RPL41	EEF1B2
RPS5	RPS27A	EIF3K	ACTG1	RPL8	UBA52


T61: 2244 cells; 6 programs

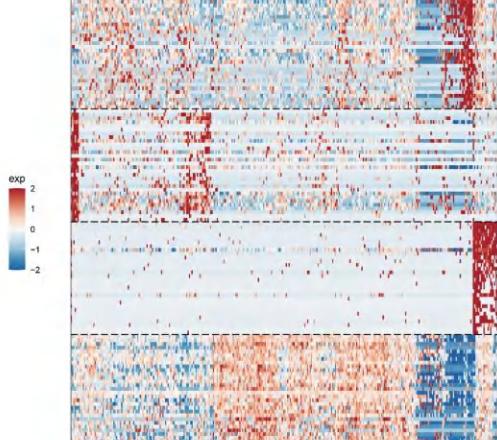
T61_1; T61_2; T61_3; T61_4; T61_5; T61_6

PTPRC	TNFRSF1B	LST1	AI1	FGL2	HCK
MS4A7	LILRB1	LIMD2	SPN	SAMSN1	LCP1
MX2	S100A4	DOCK10	OSCA4	TYROBP	
ITGA4	ITGA6	MYO1G	IKZF1	PLEKH01	C10orf38
FCGR3A	FCER1G	GMFG	AC004687.1	TMSB4X	BCL2A1
JUNB	EIF1	DUSP1	RPL30	KLF2	RPS14
JUND	RHOB	RPL41	RPS27	JUN	IER2
RPL23A	HSP90A1	FOS	RPL9	CIRBP	RPL10
ATF3	RPL21	RPS3	UBC	EPB41L4A.4S1	RPL11
HSP90AB1	RPS5	HSP90A1B	RPS27A	SNHG8	NOP53
MALAT1	NEAT1	HNRNPU	HNRNPA2B1	KCNQ10T1	VMP1
SYN1	ZBTB20	SFPQ	COLG1B1	POLR2J3.1	NABP2L2
MUC20.0T1	AHNAK	MACC1	WSB1	MCL1	PPP1R10
PPP1R15B	PNISR	INT56	DDX17	ZNF292	CNKS1R
MACF1	ENOSF1	CCNL1	FAM13B	FOSB	AF4
CD74	HLA.DRA	GPB4	PSMB8	RARRE3	HLA.DRB1
IL32	HLA.DQA1	WARS	HLA.DPA1	B2M	HLA.C
HLA.B	LAP3	ISG20	HLA.E	STAT1	ISG15
APOL1	TAP1	HLA.A	CXL11	IFT3	HLA.DPB1
CXCL10	PSME2	HLA.DMA	CTSS	HLA.DQB1	APOL2
IGFBP7	VIM	IER3	RRAD	RPL3	RPS6
RPL12	RPL18A	RPS2	TM4SF18	RPS4X	RPL4
TIMP1	RPS8	RPL6	TPM1	RPL22	EMP3
ANXA2	RPL7A	RPS18	RPL8	C1R	TMSB10
RPLP0	PRSS23	RPS16	RPL15	RPL10A	PPP1R14B
NAT8	GPX3	PDZK1P1	SLC6A18	LY6E	TSPY1
AGP1	AGT	GAL3ST1	CYB5A	NAPSA	AMN
APOM	SLC22A2	CUBN	ANXA4	GAPDH	GST1A1
ATP5MC3	SMM24	HMGN3	NIT2	CES2	BBXO1
ITM2B	HMOX1	SLC34A1	PCSK1N	MTCO1	ECI1


T62: 508 cells; 4 programs

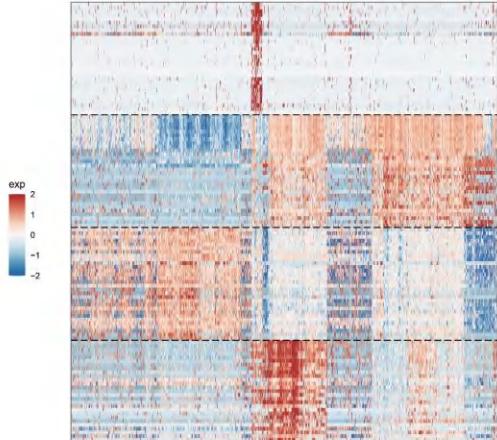
T62_1; T62_2; T62_3; T62_4

SELPLG	HSPA1B	JUNB	B2M	CD69	PTPRC
HLA.C	CD52	HSPA1A	SYNCR1	IL7R	CXCR4
DUSP2	DNAJB1	HSP90AA1	NFKBIA	HLA.B	GZMA
S100A4	CCL5	CD247	TMSB4X	BTG1	NKG7
ZFP36L2	GATA3	RPS29	HSP98	JUN	HSP96
FTH1	RPL41	HINT1	TP11	RPL10	CD63
RPS12	CRYAB	GSTP1	RPL26	RPS14	RPL23A
RPS5	RACK1	NACA	BRI3	RPL35A	CYB5A
MGST1	TMEM176B	ATP5MC2	TOMM7	TMEM176A	RPS15
ZFAT1	AC078883.3	NNMT	RPS15A	RPS7	RPL13
MALAT1	NEAT1	POLR2J3.1	VMP1	FUS	PLAGL1
HNRNPA2B1	KLF6	WSB1	FRMD4A	PDK4	MUC20.OT1
KHD4	FTX	LRRK41	NUTM2B.51	KCNQ10T1	ABC3
NOTCH2NL	SLC16A12	MCL1	SPG7	SLC25A37	LINC01320
ZNF83	ACADL	ERRF1	PREX2	RHEX	ARHGEF10
MTCO2	C3	LGALS3BP	ZNF490	MT.C01	IGFBP5
HSP90B1	C1Q1L	MT.CYB	COL1A2	CXCL14	IGFBP3
PTTG1IP	P4HB	ZNF497	C17orf51	SERPING1	AC010331.1
S100A11	GAL3ST1	AOC1	RPTOR	PKM	SLC6A8
APL2	MT.ND4	CHPF	TGM2	ZNF362	FGB


T63: 1352 cells; 8 programs

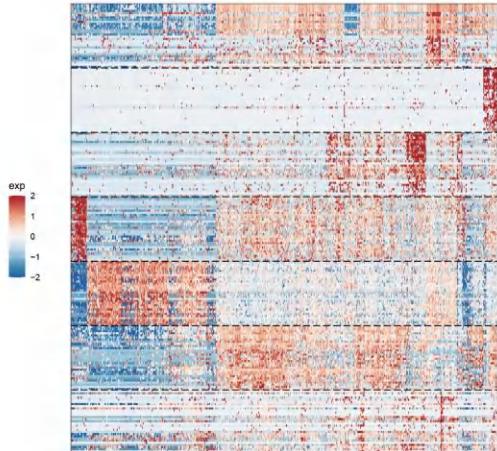
T63_1; T63_2; T63_3; T63_4; T63_5; T63_6; T63_7; T63_8

RARRES3	HLA.DRA	PSMB9	HLA.C	CD74	CXCL10
B2M	HLA.DRB1	LAP3	HLA.E	CXCL11	IL32
ISG20	PSME2	GBP4	TAZ1	ISG15	WARS
HLA.F	HLA.DRB5	PSMB8	UBE2L6	CXCL9	HLA.Q4A1
HLA.G	HLA.DRB7	PSMB7	PSMB6	CXCL9	ITGB3
NAT9	GA36T1	SLC6A16	B2.17A3	PTPRC	PTPRC1M1
GSTP1	GAPDH	FOLR1	SLC22A18	PRDX4	SIM2M
BSG	CYB5A	PGAM1	THY1	TP11	AKR1B1
ATP5MC3	DNPB1	GPX4	PREL1D1	CXO6A1	CYC1
FCGR1	ANXA2	NAAA	PRK2	ATM1B	AKR1C1
FCGR2A	ANXA2	TMEM130	PRK2	ATM1A	ADGR11
TP53I11	PDGF	PIVAP	CDH5	CDH13	UNC5B
RFLNB	FLT1	ADGR4L	A2M	LRRC32	RHOJ
PODXL	FLT4	RAMP2	S1PR1	PLIP1	ROB40
F2R	ADGP12	LDB1	AM3	HS32B2	APL2D1
COP901A	COP901A	NCOR1	NCOR1	CD50	CD50
FBXO1	C57	CD3E	PTPRC	TRAC	RAC2
LCK	C2D	HCST	IKZF1	S100A4	SLA
CD37	TRBC2	SRGN	CD48	CDS5	GZMK
LMD2	CD247	CTSW	CD8A	RUNX3	CYTIP
TGFBR2	CTSW	CTSW	CT2	CT2	CT2
MUC1	B4GALT1	AHNAK2	C3	CAV1	NEFL
BGN	COL1A2	C5orf46	FLNA	ANGPTL4	MXR7
COL6A3	NDUFA4L2	CT3	PMPEA1	COL23A1	DEGS1
CIR	CD151	CTSW	SERPING1	MRA9	EMP3
CD151	CTSW	CT2	CT2	CT2	CT2
S100A1	TSC22D4	BACE2	ASGR2	COLEC11	ADRA2A
VNN2	TTR	F2	LAD1	NCAM1	CLDN11
ASGR1	TFF3	WFDC2	CLU	CXL2	AC02480.2
TP53I12	TFB2M	MT	R27	SERPING1D	
MACPF1	MTND4	TM.ND1	TM.C03	TM.ND5	
NEAT1	MT.ND4	MT.ND5	VEGFA	DXD17	SYNE2
MTCO1	AKAP1	PNISR	HNRRNP1	KCNQ10T1	SORBS2
NCL	FAT1	MT.CYB	MT.ND6	ATP11A	POLR2J3.1
TNS1	PKHD1	ZBTB20	LINC01320	ZNF195	PRDX2
	PKHD1	ZBTB20	PKHD1	ZNF195	PRDX2
ZFP36	RPL41	RPS6	RPL8	RPS3	RPS14
RPL11	RPL30	RPL10A	RHOB	RPS8	RPS13
RPS3A	RPL18A	RPL18	RPS2	IER2	RPS18
RPL13	ATF3	RPL7A	RPL21	EGR1	CEBPD


T64: 322 cells; 4 programs

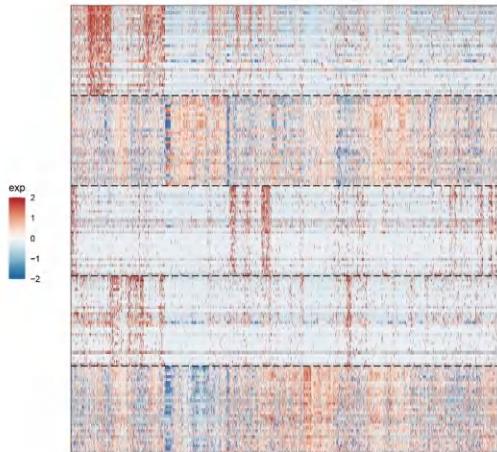
T64_1; T64_2; T64_3; T64_4

MALAT1	ZBTB20	VMP1	CCNL1	MCL1	N4BP2L2
MUC20.OT1	GOLGB1	VEGFA	DNAH11	NFKBIZ	RBMB33
FKBP5	ITPR1L2	FOSB	PNISR	RBM39	LINC01320
PLEKH2	WDR60	TRA2A	ZBTB16	DDX3X	CHORDC1
CREBRF	WEE1	NEAT1	JMD1C	GCC2	STAT3
CCL20	C1S	MT3	TMSB10	MT1H	LINC01638
C1R	BICDL2	CAV1	IL1R2	MT1G	EIF4EBP1
CXCL8	MT1X	GPNMB	IGFBP7	MMP7	PRSS23
C3	SYTL2	AEBP1	C2	ANXA2	LOX
CEBPB	LGALS1	CP	PHLDA1	TGFBI	EFEMP1
NKG7	CCL5	CST7	CD37	GZMA	PTPRC
CD48	TMSB4X	SRGN	GZMH	TRBC2	CD52
CYTIP	RUNX3	RAC2	TBC1D10C	CD7	SKAP1
PRF1	S100A4	TRDC	HOPX	LCK	LMD2
KLRB1	GPM3	CD3D	KLRD1	SLAMF6	SPN
TMEM176A	TMEM176B	TECR	LGALS2	CYB5A	PEPB1
ADIRF	FTH1	BBOX1	GAMT	IMPA2	HLA.B
ATP5F1D	TMEM37	AMN	MT.C01	PP1A	SERPIN1A
OC1AD2	PDK1	SLC6A13	DUSP1	ACY3	CALM3
ADI1	ACO2	HPN	NDUFA2	GPX4	CLU


T65: 1899 cells; 4 programs

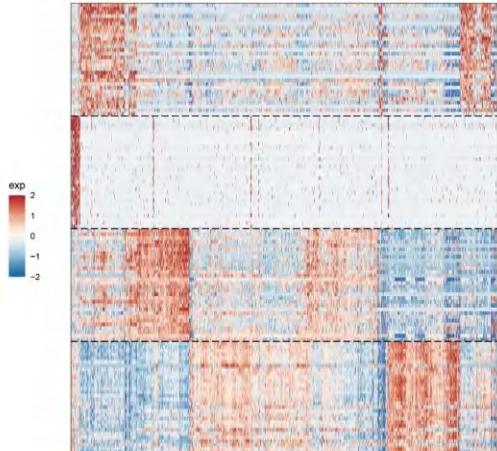
T65_1; T65_2; T65_3; T65_4

GZMA	NKG7	PTPRC	CORO1A	DOK2	CCL5
S100A4	CD52	TMSB4X	GZMM	GIMAP7	GZMH
PTPN7	GATA3	TBC1D10C	PRF1	TRBC1	SASH3
GRAP2	CCR5	HCST	CTSW	TRAC	TRBC2
CD3G	CD3E	CD2	DUSP2	CD69	SAMD3
MT.CYB	MT.ND4	MT.ATP6	MT.C03	MT.ND1	MTCO1
MT.ND2	MT.C02	MT.ND3	MT.ND5	ATP1B1	VCAN
VEGFA	MALAT1	CA12	LINC01320	EDIL3	MTRNR2L12
SLC38A1	N4BP2L2	ATP1A	SPP1	TFPI	BICD1
APP	ITM2B	MT.ND4L	VCAM1	SYNE2	MYO9A
FTH1	CYB5A	GAPDH	HINT1	PEPB1	RPLP1
MYL6	RPL41	TPT1	LGALS4	SERF2	PP1A
S100A10	GSTP1	MYL12B	RPS28	VAMP8	TXN
CCDC146	CHCHD2	S100A11	TMSB10	ADIRF	BR13
RPS15	FTL	TP11	GPX4	RBP5	PRDX5
FOS	JUN	IER2	DNAJ1	HSPA1A	EGFR
JUNB	JUND	ATF3	PPP1R15A	UBC	CRYAB
DUSP1	HSPA1B	ZFP36	HSPA8	FOSB	HSPB1
C11orf96	SERTAD1	SERPINH1	TUBA1A	SOCS3	HSP90AA1
CYR61	HSP90AB1	BAG3	DNAJA1	BTG1	H3F3B


T66: 610 cells; 7 programs

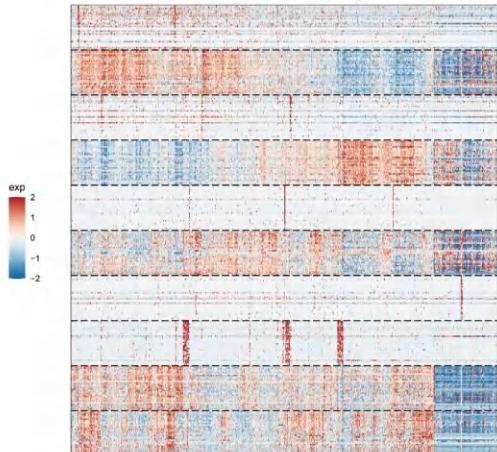
T66_1; T66_2; T66_3; T66_4; T66_5; T66_6; T66_7

MT.C02	MT.C01	MT.C03	MT.ND3	NAT8	CUBN
MT.ATP6	MT.ND5	LRP2	MT.CYB	AMN1	MTND4
SLC3A1	SLC22A1	MT.ND2	SLC13A1	CDLN2	IL17RB
SLC22A11	THY1	TMEM37	KLHDCC7A	CNTNAP3	CDH16
FCGR1	ITM2B	CYBA	ERBB3		TMEM176B
PTPRC	LIMD2	NKG7	CS7	CDBA	FYB1
GZMA	CD3D	DUSP2	HCS7	GZMA	PYHIN1
CTSW	PRF1	LSH1	CD27	DUSP4	COPD1A
CXO4	CD27	PTPN7	TIN	TMPC1	IL2RG
TRPC2	PTPN2	RAC2	PREX1	CD2E	CPE
VIM	TGFBI2	SFRP2	ARL4C	CDP1	
COL6A2	COL1A2	MXRA8	IGFBP5	C1R	COL1A1
BGN	NTM	LINC01638	CAV1	TMSB10	SPON2
LGALS1	DDIT4	AEBP1	C3	SLC38A5	B4GALNT1
C1S	PGF	NPTX2	LOX	STEAP3	TUBA1A
NEAT1	NAMP1	PPP1R15B	KDM6B	FAM133B	KCNQ10T1
HNRNPU	ARL5B	MALAT1	MCL1	WBS1	ZBTB10
FOSB	STAT3	UBE2D3	CCNL1	HSPH1	NFKBIZ
HNRNPA2B1	HSP90AA1	HSPD1	IRF1	VMP1	CHORDC1
YBX3	KANSL1L	PLEKH1	AC020916.1	SLC17A4	NFKB1D
PTPRC	CDP1	CDP1	CDP1	CDP1	
EEF1A1	SERF2	COXTC	ATP51E	TP11	RPL3
RPLP1	LDHA	GSTA1	ATP51F	ATP5MC3	ALDOB
UQCRCQ	COX411	MI6	TP11	NDUFB2	RPS26
DOT	POLR2L	RPL28	UQCRCB	FYD2	ATPMG
HLA.B	HLA.C	CLU	EZR	HLA.A	B2M
HLA.E	ADIRF	TMEM176A	PERP	FOS	AHNAK2
HLA.F	HLA.DRB5	CLDN3	HLA.G	COL23A1	HLA.DRB1
YWHAH	ATF3	TMEM176B.1	JUN	JUNB	DSG2
ELF3	IER2	CRIP1	DPP4	NOV	DUSP1
SAA1	MT2A	IDO1	SERPINE2	PRSS23	TRNP1
CD63	S100A3	IL32	CXCL11	CTSL	ACKR4
EMP3	C3.1	CYBA	CCL20	WMS5	UNC0127
CXCL8	APOL1	IGFBP7	IFTM3	RARRE3	PSME2
PPP1R1A	CAV1.1	PNF1	ANXA2	CXCL9	TMSB10.1


T67: 4821 cells; 5 programs

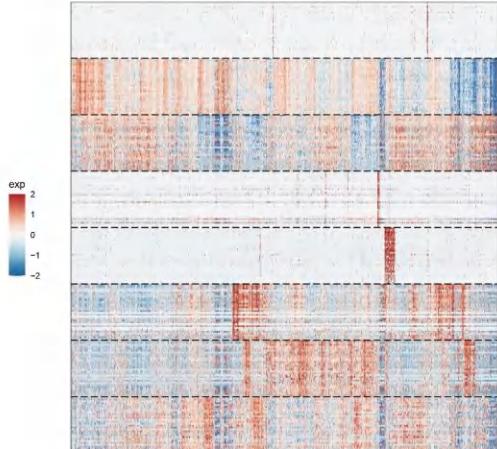
T67_1; T67_2; T67_3; T67_4; T67_5

HLA.DRA	HLA.DPA1	CD74	C1QB	HLA.DPB1	C1QA
HLA.DRB5	TYROBP	HLA.DRB1	APOE	C1QC	HLADQA1
FCER1G	CST3	CCL3	AI1F	FTL	LYZ
TMSB4X	CD14	MS4A6A	HLA.DQB1	MS4A7	CTSS
CXCL8	IGSF6	SRGN	CCL3L1	HLA.DMA	CD63
CXCL14	PDZK1IP1	NAT8	MT.C02	HINT1	GAPDH
MTND4	RPL3	MT.ATP6	MT.C03	MT.ND3	RARRE3
RPS8	LY6E	MT.CYB	RACK1	MT.C01	EEF1A1
GPX3	ANGPTL4	RPL7A	SPP1	GSTA1	RPLP0
ANXA4	LDHA	RNASET2	SLC17A3	SERPINA1	RPL8
FLT1	PLVAP	TMF3	IGFBP5	SLC9A3R2	SPARC1
PLPP3	KDR	A2M	RAMP2	PECAM1	SPARC
COL4A1	IGFBP7	ESM1	MGP	RAMP3	HSPG2
PTPRB	PODXL	EFNB2	LDB2	EMCN	GJA1
EPAS1	SOX18	RGCC	CALCR	PLPP1	RGS5
NKG7	CCL5	CST7	GZMA	GNLY	TRBC2
CD52	CD3D	RAC2	TRBC1	DUSP2	GZMH
S100A4	PTPRC	CD89	TMSB4X.1	CORO1A	PRF1
CD7	HGST	CD3G	TRAC	GZMB	LCK
GZMK	SH3BGR3	KLRB1	CD2	KLRD1	CXCR4
ATF3	HSP90AA1	CRYAB	HSPA1A	HSPB1	FOS
JUN	DNAJB1	FOSB	HSPA1B	HSP90AB1	BTG2
DNAJB4	IER2	DNAJ1A1	EGR1	ANKR037	BAG3
MAFF	YBX3	UBC	HSPD1	VEGFA	KLF2
JUND	RHOB	JUNB	NEAT1	ADIRF	PPP1R1A


T69: 3163 cells; 4 programs

T69_1; T69_2; T69_3; T69_4

H3F3B	FABP7	F8	HSP90AB1	BEX4	F5
ACTG1	CD24	VEGFA	MDK	SNHG8	BTG2
MAFB	HSPA1B	DSP	BTG1	ATP1B1	VIM
FTCD	C14orf180	IFI27	FOS	BAZ2B	HSP90AA1
HSPA1A	SPON2	GNAS	THY1	DDX5	CYSLTR2
CORO1A	CD52	S100A4	ARHGDI	CST7	CD3D
GZMM	LCP1	CCL5	CD3E	GZMA	DUSP2
CD3G	HGST	TRAC	TRBC2	FYB1	LIMD2
CD48	NKG7	CD69	DOK2	GMFG	GIMAP7
TRBC1	CD247	CD37	GZMH	GNLY	HCLS1
CXCL14	PCSK1N	ITM2B	GPX3	DPEP1	ISOC2
PEPD	CES2	AQP1	SLC22A18	AOC1	GSTK1
NAPSA	MT.C03	TMEM176A	CDHRS	AGT	AZGP1
GPX4	NAT8	CTSH	GPD1	PDZK1IP1	TMEM176B
BSG	PEPB1	UQCR11	UQCRCQ	MT.C01	GAMT
RPL8	RPS19	RPLP2	RPL18A	RPL37	RPL41
MT3	RPS20	RPL7	RPS3	RPL36	RPL30
RPS21	RPS25	RPS27	RPLP0	ZFAS1	YBX3
RPL21	RPL27A	EPB41L4A.1	RPS16	RPS13	NNMT
TPT1	RPL11	CKB	HILPDA	RPL15	RPS14


T70: 1583 cells; 10 programs

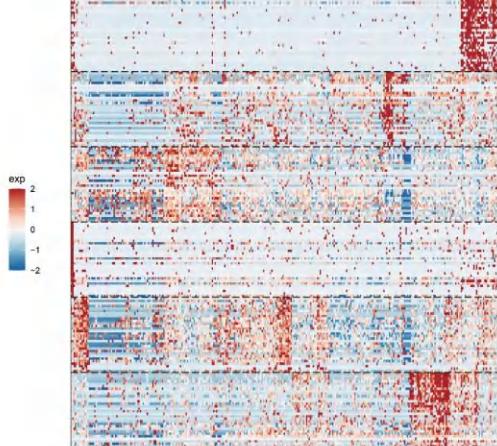
T70_1; T70_10; T70_2; T70_3; T70_4; T70_5; T70_6; T70_7; T70_8; T70_9

RSAD2	IFI15	OAS1	SAM9L	MK1	JHCR5
TMC10	OAS1	F18	TXNL1B	AL135744.1	OGA
GMPB	CD163	LINC0128	TXNL1B	CD163	CD163
JEL172	ST1P2	CHSY3	AC015680.3	PARE14	HERC6
TMEM176A	CD14	TMEM176A	CD14	CD14	CD14
NAT8	KHK	PEBP1	GSTK1	CDP43	FORT
TMEM176B	CD14	TMBIM6	CD14	CDP43	AMR1
TMEM176C	CD14	CD14	CD14	CDP43	SPFH54A
TMEM176D	CD14	CD14	CD14	CDP43	CDYB1
TMEM176E	CD14	CD14	CD14	CDP43	MARCH1
TMEM176F	CD14	CD14	CD14	CDP43	C1Q1A
TMEM176G	CD14	CD14	CD14	CDP43	CXorf21
TMEM176H	CD14	CD14	CD14	CDP43	CDP43
TMEM176I	CD14	CD14	CD14	CDP43	CDP43
TMEM176J	CD14	CD14	CD14	CDP43	CDP43
TMEM176K	CD14	CD14	CD14	CDP43	CDP43
TMEM176L	CD14	CD14	CD14	CDP43	CDP43
TMEM176M	CD14	CD14	CD14	CDP43	CDP43
TMEM176N	CD14	CD14	CD14	CDP43	CDP43
TMEM176O	CD14	CD14	CD14	CDP43	CDP43
TMEM176P	CD14	CD14	CD14	CDP43	CDP43
TMEM176Q	CD14	CD14	CD14	CDP43	CDP43
TMEM176R	CD14	CD14	CD14	CDP43	CDP43
TMEM176S	CD14	CD14	CD14	CDP43	CDP43
TMEM176T	CD14	CD14	CD14	CDP43	CDP43
TMEM176U	CD14	CD14	CD14	CDP43	CDP43
TMEM176V	CD14	CD14	CD14	CDP43	CDP43
TMEM176W	CD14	CD14	CD14	CDP43	CDP43
TMEM176X	CD14	CD14	CD14	CDP43	CDP43
TMEM176Y	CD14	CD14	CD14	CDP43	CDP43
TMEM176Z	CD14	CD14	CD14	CDP43	CDP43
TMEM177	CD14	CD14	CD14	CDP43	CDP43
TMEM178	CD14	CD14	CD14	CDP43	CDP43
TMEM179	CD14	CD14	CD14	CDP43	CDP43
TMEM180	CD14	CD14	CD14	CDP43	CDP43
TMEM181	CD14	CD14	CD14	CDP43	CDP43
TMEM182	CD14	CD14	CD14	CDP43	CDP43
TMEM183	CD14	CD14	CD14	CDP43	CDP43
TMEM184	CD14	CD14	CD14	CDP43	CDP43
TMEM185	CD14	CD14	CD14	CDP43	CDP43
TMEM186	CD14	CD14	CD14	CDP43	CDP43
TMEM187	CD14	CD14	CD14	CDP43	CDP43
TMEM188	CD14	CD14	CD14	CDP43	CDP43
TMEM189	CD14	CD14	CD14	CDP43	CDP43
TMEM190	CD14	CD14	CD14	CDP43	CDP43
TMEM191	CD14	CD14	CD14	CDP43	CDP43
TMEM192	CD14	CD14	CD14	CDP43	CDP43
TMEM193	CD14	CD14	CD14	CDP43	CDP43
TMEM194	CD14	CD14	CD14	CDP43	CDP43
TMEM195	CD14	CD14	CD14	CDP43	CDP43
TMEM196	CD14	CD14	CD14	CDP43	CDP43
TMEM197	CD14	CD14	CD14	CDP43	CDP43
TMEM198	CD14	CD14	CD14	CDP43	CDP43
TMEM199	CD14	CD14	CD14	CDP43	CDP43
TMEM200	CD14	CD14	CD14	CDP43	CDP43
TMEM201	CD14	CD14	CD14	CDP43	CDP43
TMEM202	CD14	CD14	CD14	CDP43	CDP43
TMEM203	CD14	CD14	CD14	CDP43	CDP43
TMEM204	CD14	CD14	CD14	CDP43	CDP43
TMEM205	CD14	CD14	CD14	CDP43	CDP43
TMEM206	CD14	CD14	CD14	CDP43	CDP43
TMEM207	CD14	CD14	CD14	CDP43	CDP43
TMEM208	CD14	CD14	CD14	CDP43	CDP43
TMEM209	CD14	CD14	CD14	CDP43	CDP43
TMEM210	CD14	CD14	CD14	CDP43	CDP43
TMEM211	CD14	CD14	CD14	CDP43	CDP43
TMEM212	CD14	CD14	CD14	CDP43	CDP43
TMEM213	CD14	CD14	CD14	CDP43	CDP43
TMEM214	CD14	CD14	CD14	CDP43	CDP43
TMEM215	CD14	CD14	CD14	CDP43	CDP43
TMEM216	CD14	CD14	CD14	CDP43	CDP43
TMEM217	CD14	CD14	CD14	CDP43	CDP43
TMEM218	CD14	CD14	CD14	CDP43	CDP43
TMEM219	CD14	CD14	CD14	CDP43	CDP43
TMEM220	CD14	CD14	CD14	CDP43	CDP43
TMEM221	CD14	CD14	CD14	CDP43	CDP43
TMEM222	CD14	CD14	CD14	CDP43	CDP43
TMEM223	CD14	CD14	CD14	CDP43	CDP43
TMEM224	CD14	CD14	CD14	CDP43	CDP43
TMEM225	CD14	CD14	CD14	CDP43	CDP43
TMEM226	CD14	CD14	CD14	CDP43	CDP43
TMEM227	CD14	CD14	CD14	CDP43	CDP43
TMEM228	CD14	CD14	CD14	CDP43	CDP43
TMEM229	CD14	CD14	CD14	CDP43	CDP43
TMEM230	CD14	CD14	CD14	CDP43	CDP43
TMEM231	CD14	CD14	CD14	CDP43	CDP43
TMEM232	CD14	CD14	CD14	CDP43	CDP43
TMEM233	CD14	CD14	CD14	CDP43	CDP43
TMEM2					

T71: 5469 cells; 8 programs

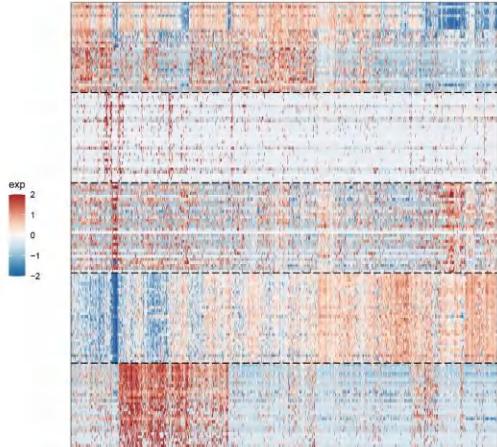
T71_1; T71_2; T71_3; T71_4; T71_5; T71_6; T71_7; T71_8

CLEC14A	IL33	A2M	FAM198B	ENFB2	MGP
CD34	PECAM1	RAMP2	ADGR4	ENG	MMRN2
CDH5	EMCN	S1PR1	CLDN5	FLT1	CG4A
CD93	FN1		SPARC1	VEGFC	SLC9A3R2
CDP7	VMP1	PODXL	ADGR5	ADGR5	CDP7
RPS2	RPL28	RPL41	RPS15	RPL29	RPL12
RPS12	RPL18A	RPS15	RPL29	RPL19	RPS8
RPL13	RPL10A	RPL3	RPS5	RPS23	
RPS4X	RPS7	RPS3	RPLP0	RPS14	RPS15A
RPS9	RPS1	RPS6	RPS6	RPS32	RPS9
MAFAT1	MTATP6	VEGFA	NEAT1	RPL23	MTND2
HNRPNU	GOLGB1	VMP1	NEAT1	MTND3	FUS
ZBTB20	RPS11	MTND4	HNRPNA2B1	SRRM2	KCNQ10T1
MTND5	FOSB	CCNL1	HNRPNA1	RBM39	RPS20
ZNF292	STAT5A	DDX17	CCNL1		
TSHZ3	BIRC5	MAP3K7	DDX17	DDX17	
KIF20A	ASPM	CCNB2	PTTG1	CDK20	UBE2C
CCNB1	GTSE1	CEP55	URKB	STMN1	KIFC1
TOP2A	PBK	SAPCD2	PLK1	CENPA	HJURP
KIF23A	TBL1X1B	ANXA1	H2AFY2	CENPA	SAPCD2
CD34	CT57	CL5	ZMPSTE23A	CD50	
NKG7	IL2RG	PTPRC	TRBC2		TRAC
HGST	CTSW	SRGN	LIMD2	GZMK	DUSP2
CD3G	RGS1	GMFG	CD3E	CD27	CD69
CD3G	CD247		CD8A	IRF3	
TNFRSF9	CD74	HDAC2	HDAC2	RARRE33	HLA-C
HLA-DRA	HLA-DRA	B2M	PSMB9	HLA-DPA1	HLA-A
HLA-DQA1	HLA-DQA1	HLA-B	CXCL10	HLA-DQB1	IDO1
HLA-DRB1	HLA-DRB1	HLA-E	CXCL11	HLA-DMA	CXCL9
HLA-DRB1	HLA-DRB1	LA.P3			
TNFRSF10	CT55	PTEN	PTEN	PTEN	
NANOG	CKX14	SLC6A13	PDZK1IP1	GRB10	
APOM	AMN	SLC6A13	PDZC1	CYB5A	AGT
BBXO1	KHM	SMIM24	AQP1	COXA1	CDH95
SLC5A12	SLC17A3	TM4SF5	GAL3ST1	PRAP1	PEPD
ACO1	BSG	DAZ2	DNN1	TXNL4A	SLC39A5
DEFA5	DEFA5	DISP1	DISP1	DISP1	
KPKM	TMEM176A	JUNB	KRT7	JUND	CRIP2
TMEM176B	CLU	S100A10	KLF2	ZFP36	PGK1
RHOB	CLDN3	HSPA1A	HSPB1	FOS	
HSPA1B	TP11	CLDN7	ADIRF	IER2	EIF1


T72: 2433 cells; 5 programs

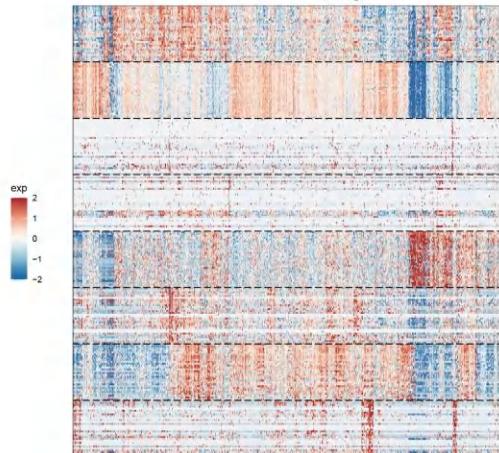
T72_1; T72_2; T72_3; T72_4; T72_5

MALAT1	NEAT1	POLR2J3.1	HNRNPA2B1	HNRNPU	VMP1
WSB1	PNSR	KCNQ10T1	PLEKH12	ATP13A3	DDX17
NABP2L2	ZEB2	PLAGL1	FTX	CNCN1	MAOF1
PIAS2	PAX8	VEGFA	PLEKHA1	MUC20.0T1	WDR60
ZNF83	MACC1	GLS	ABCC3	SYNE2	ARGLU1
MTND3	MTND4	MT.ATP6	MT.ND1	MT.CYB	MT.C01
MTND2	MTND5	MT.C03	MT.C02	MZB1	IGHG3
IGHG4	IGHG1	IGKC	MT.ND4L	JCHAIN	CD3E
DUSP2	MTND6	IL7R	TMSB4X	SRGN	CD69
CD52	MTRNR2L12	CD74	PTPN22	ITGAL	RCSD1
NAT8	GFX4	KHK	BB0X1	LGALS2	ECH1
SLC6A18	CYB5A	MPC2	TMEM176B	DNP1H1	GSTA1
ATP5MC3	GAL3ST1	PXMP2	LDH1B	NDUFB2	AQP1
TMEM176A	HINT1	ANXA4	CXCL14	OCIA2D	IMPA2
CUBN	PTN	COX5B	RPS28	PRDX2	CHCHD10
TNFRSF12A	S100A11	TM4SF1	PFN1	ACTB	ACTG1
CT52	MT2A	KRT19	ANXA2	IGFBP7	CITE4
PDZK1IP1	TNFAIP6	TPM1	CLIC1	CFL1	TUBA1B
RAN	EMP3	MYL6	PHLDA1	PPP1R14B	FHL2
IL32	CAV1	TRAM1	PRSS23	CCL2	MYL12A
FOS	JUNB	EIF1	DUSP1	RPL10	RPL41
TP11	KLF2	HSPA1A	C11orf96	RPL21	HSPA1B
ATF3	IER2	RHOB	DNAJ1B1	RPL23A	VIM
RPL9	RPS14	FTH1	RPL30	RPS27A	CCNI
RPS27	RPS5	UBC	RPS3	RPS2	RPL16A


T73: 309 cells; 6 programs

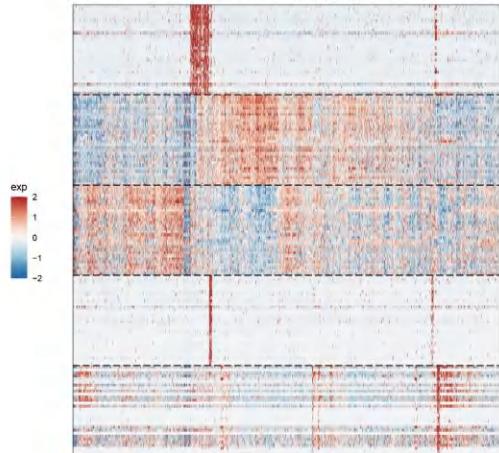
T73_1; T73_2; T73_3; T73_4; T73_5; T73_6

CD3G	TRAC	TMSB4X	IL2RG	PTPRC	TIGIT
GPSM3	LSP1	CD3D	GZMK	LAPTM5	CD27
C2D	DUSP4	ARHGDI8	ITM2A	CORO1A	EMB
HGST	TBC1D10C	UCP2	CTSW	CD52	LCP1
LCK	SPN	RAC2	GIMAP4	SRGN	TRBC2
THBS1	XIST	SYNE2	DDX17	VEGFA	SYNPO
SNB02	LINC00472	NEAT1	MALAT1	EP400	SYNE1
MT.C03	ZNF292	LIFR	ALPK1	LRP2	ZNF462
AHNAK	TBC1D8B	HNRNPU	LRCH1	AKAP9	SLCO3A1
ILST	BRAT1	SAMDA1	RRBP1	RC3H1	MKLN1
CYB5A	SLC6A13	LGALS2	NDUF1C1	GAPDH	TMEM176B
CXCL14	TESC	MPC2	AC021744.1	ABC89	BB0X1
TMEM139	TMEM176A	FBP1	GAL3ST1	DUSP28	RACK1
FTL	TP11	PDZK1IP1	SERF2	TSTD1	CMBL
TPH1	SLC17A3	ADIRF	S100A1	MIF	HIST1H1C
IGSF6	SP1	C1QB	FCER1G	C10C	A2B
CD14	C1QA	HLA.DPB1	TYROBP	APOC1	CTSS
MSA6A	ADA2	CST3	LY96	AP0E	GPR65
CD4	FCGR2A	AIF1	LST1	HLA.DRA	LAPTM5.1
HLA.DQB1	RGS10	PTGER4	DSE	NRP2	HLA.DPA1
CXCL11	TNFSF10	MARCKSL1	RARRE3	C3	VAMP5
GBP1	C1R	CAV1	TYMP	IGFBP3	IL32
LY6E	IL18BPB	PSMB9	NNMT	PSMB9	CXCL9
SELENOM	TIMP1	CD40	S100A11	TAP1	PHLDA2
IFTM3	TM5B10	WARS	FBXL6	SP1B	EMP3
FOS	IER2	JUNB	JUND	ZFP36	SOC3
UBC	ATF3	EGFR1	JUN	F05B	SER1AD1
DUSP1	HSPA1B	KLF2	PPP1R15A	MAFF	GOF15
BTG2	CDKN1A	CEBPD	EIF1	KLF4	NFKBIA
YBX3	MTND1	ST7A51	GADD45B	H3F3B	DNAJB1


T74: 1603 cells; 5 programs

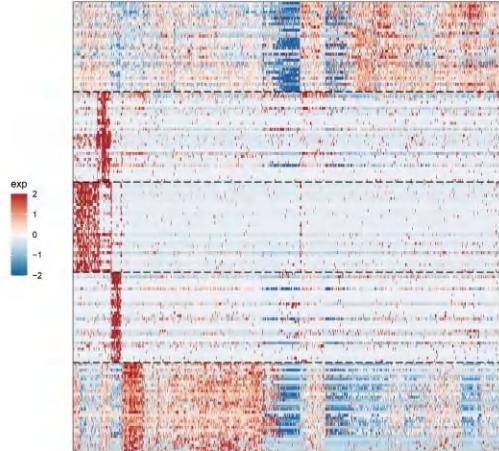
T74_1; T74_2; T74_3; T74_4; T74_5

MT.C03	CXCL14	MT.C02	MT.ATP6	PDZK1IP1	MTC01
MTND4	MT.ND3	MT.CYB	KRT18	CYB5A	TMEM176A
CRYAB	GPX3	HINT1	SLC17A3	CE52	GSTA2
FXYD2	SP1	CNDP2	GSTA1	TMEM176B	SERPINA1
ANGPTL4	LGALS2	RBP5	MT.ND5	ANXA4	CKB
FIT1	ENG	SLC9A3R2	ADGR14	COL4A1	HSPG2
VWF	CD34	SPRY1	COL4A2	PODXL	PLVAP
PECAM1	RAMP3	KDR	SULF1	CALCR	ADGRF5
TIMP3	TM4SF1	TCF4	COL15A1	SPARC1	EMP1
HEG1	INSR	A2M	PLXND1	CLEC14A	SH3BP5
SQSTM1	MALAT1	ATF3	TCEA1	BEX2	NEAT1
HSPA9	ZBTB20	MUC20.0T1	NUPR1	FAM13A	VEGFA
PDK4	FOSB	IGFBP5	PLCG2	AC025423.1	VMP1
CPEB4	GADD45A	N4BP2L2	ANXA1	RUFY3	PNISR
PDLM3	ZFAND5	FTL	HSP90AA1	DDX17	MSC.A51
RPL41	RPS14	RPL10	RPS27	RPL18	RPS11
RPS20	RPL13	RPL11	RPS6	RPL36	RPL23
RPS5	RPL24	APOE	RPL39	RPS28	RPL9
RPL35A	RPL19	VIM	RPS18	RPL37A	RPL18A
RPS3	RPL30	RPS15	LGALS1	RPL27A	RPL23A
HLA.DRA	HLA.DPB1	HLA.DPA1	C74	HLA.DR55	TYROBP
HLA.DRB1	SRGN	RGS1	TMSB4X	CST3	C1QA
SAT1	AIF1	HLA.DQA1	C1QB	FCER1G	CXCR4
B2M	CTSS	LYZ	HLA.DQB1	SGK1	LAPTM5
FLGL2	C1QC	MS4A7	HLA.DMA	GPR183	HERPUD1


T75: 1071 cells; 8 programs

T75_1; T75_2; T75_3; T75_4; T75_5; T75_6; T75_7; T75_8

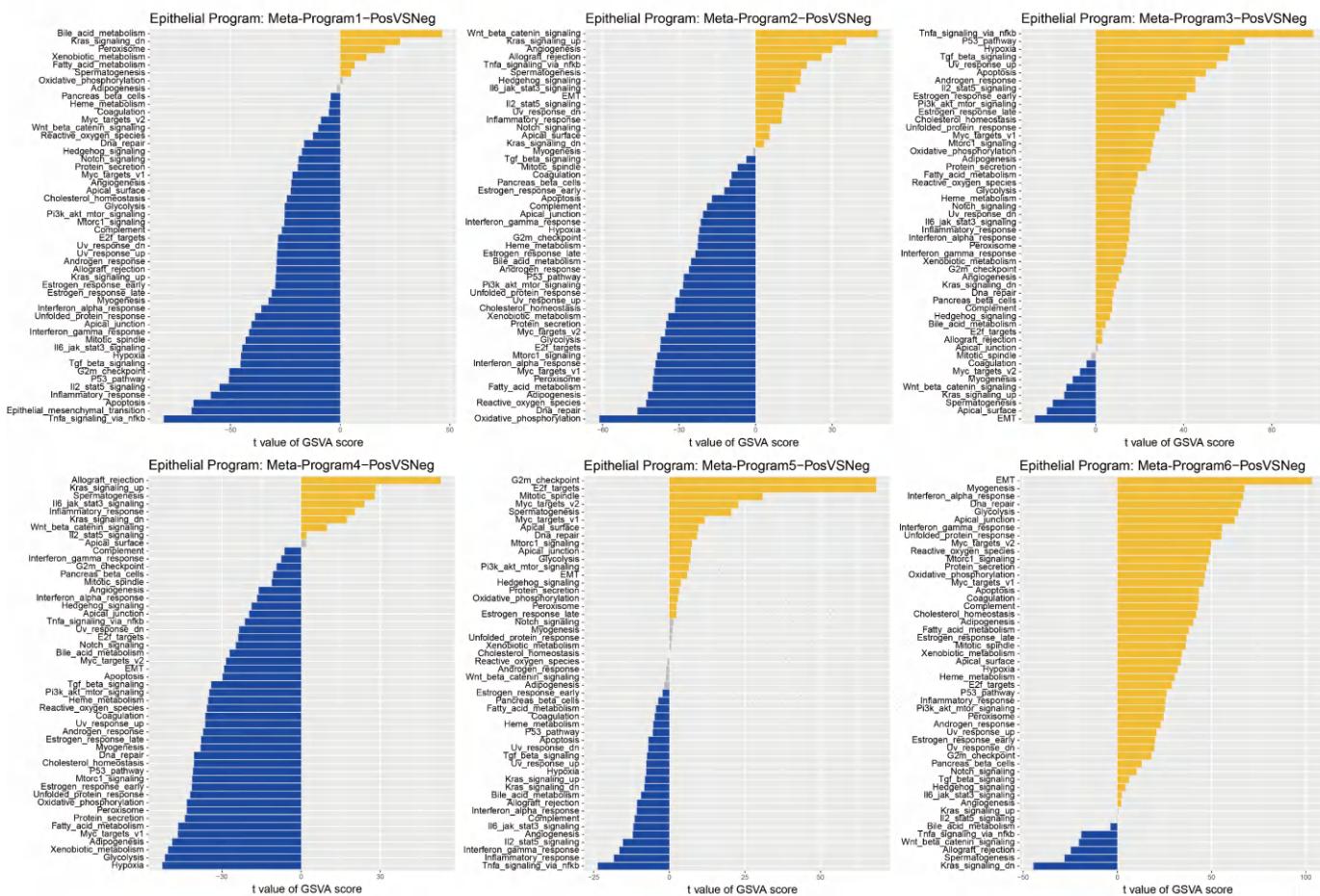
HLA B	SLP1	HLA A	HLA C	CT3	B2M
CD9	IGFBP4	ADIRF	CLU	ITM2B	KRT19
SERPING1	ST100A11	TMEM176A	LY6E	TMEM176B	HLA-DRB1
MUCH1	SP100	COP9	COP9	COP9	RC351A
	SP100A10	S100A10	CAPG	HLA-DQB1	
RPS28	RPL7A	RPS23	RPL41	RPL18	RPS8
RPS18	RPS1	RPL3	RPL19	RPL10	RPS15
RPS12	RPL13	RPS2	RPS24	RPL28	RPS5
RPS26	RPL16A	RPL19A	RPL8	RPL9	RPS2
RIL11	RPL12	RPL19A	RPS19	RPS27A	ESF1A1
FNT1	COL5A2	TSPAN13	TGF12	COL1A1	C5orf46
COL6A3	COL1A2	MIAT	LTPB1	CPE	AMIGO2
SC38A5	FAT10	SCG5	SPOCK1	STEAP3	DKK2
SPHC	FBXO18	SPFH	C20orf7B	FRMD8	ACVR2A2
HTRA1	COL6A2	TGF13	GU11	ROR1	ARL4C
RGS11	HLD-DBP1	GPR183	HLA-DRA	HLA-DQA1	CD83
LCP1	HLD-DBP1	SAMN01	RUNX3	LYZ	NRP2
PLEK	PTGTR	LIMD1	TYROBP	LAMP5	RASGRP2
PTPRC	HLD-DBP1	TM6SF4X	CDA	LAMP6	PTPRC
USP1	CYTR	CCL4	HLA-DRB8	CD27	CD26
MALAT1	VEGFA	NEAT1	WSB1	SYNE2	DDX17
M4BP2L2	ARGL1	MACC1	POLR2J3.1	HNRNPA2B1	ZNF292
HNRNPU	AHNAK	ATP1A1	MACF1	RIF1	AF4
ITGB8	WIF1	WDPR9	GTF2I	SOR11	CCDC2
SFPQ	PIN1R	SRRM2	LUC7L3	DNAH11	DST
TNFRSF12A	SERPINE1	CITE04	G0S2	S100A11	CCLO2
PNF1	ANXA2	IL3	IER3	PLAUR	RRAD
PTP1C	IL2KBIA	NPRK1	CXCL8	S100A6.1	KRT18
PPBP14B	S100A10.1	MAF35	M17A	RBBP1	AGC00902
KRT4	CBPBP1	SOD2	PHLDA2	FHL2	GAL51
DNAJ1B	ATF3	HSP90AA1	DNAA11	HSP90AB1	F03
HSPA1B	HSPA1A	JUND	HSPB1	EGR1	HSP8A
CRYAB	JUN	BAC3	PPBP15A	U2AF1	JUNB
BY2G	DUF484	EIF4E	IEF2	SERPINH1	STOM1D1
UBG	ZFP36	MAFF	HSPF1	SCOS3	HSPD1
CDHHR5	SLC6A13	TXCL14	SLC25A	PCSK1N	NAT5
SERPINA6	CYB5A	RBP5	ANGPTL3	AMN	GGH
ENK	TEFC	TMEM182	ANGPTL16.1	LGALS2	SLC6A5
FABP9	TSR96	HINT1	COL1A1	SMC3D4	SLC5A12
G4MT	DEP1R1	SERPIN1A	MGST1	UQCRCO	SLC22A18


T76: 3608 cells; 5 programs

T76_1; T76_2; T76_3; T76_4; T76_5

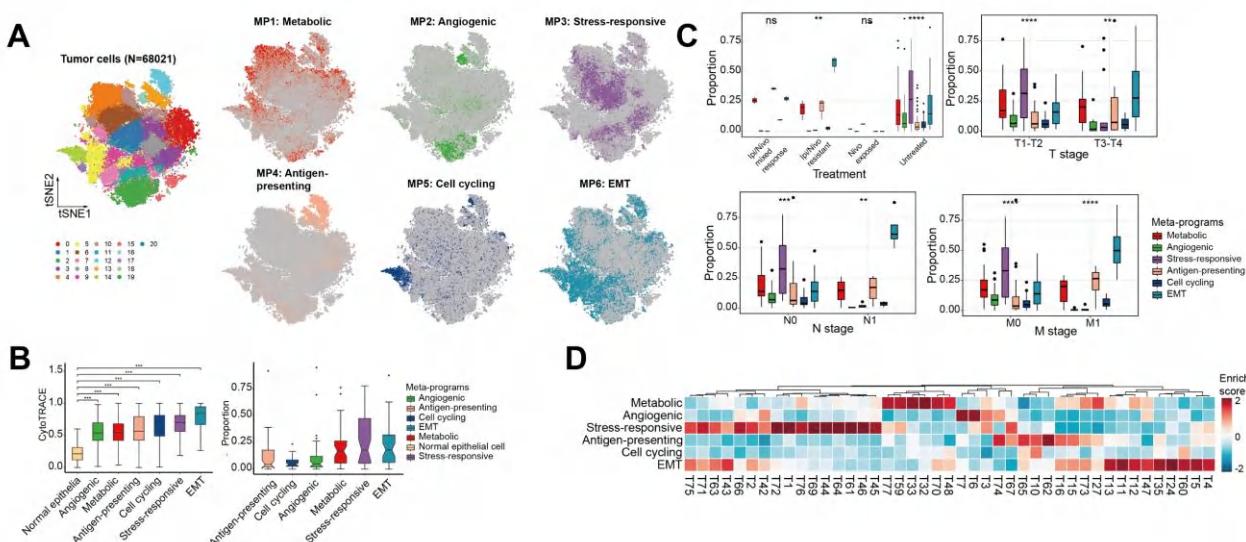
S100A4	PTPRC	NKG7	HCS1	CCL5	SRGN
CD52	CD37	LCP1	TMSB4X	ARHGDIB	CORO1A
GZMH	G2MA	CD48	CST7	PLEK	GNLY
DUSP2	CD3D	CD3E	LSP1	LAPTM5	TRAC
CD3G	CYTIP	B2M	LIMD2	FGFBP2	SH3BGR3
<hr/>					
PDZK1P1	GPX3	NAT8	FTL	KHK	CYB5A
APOM	PEPB1	GAMT	CXCL14	AMN	PEPD
HMOX1	ATP6V1F	ECH1	GAPDH	MTCO1	AZGP1
DPEP1	LDHB	CES2	NAPSA	DNPH1	GSTK1
SLC5A12	ISOC2	TMEM176B	CUB1	RPBP5	BSG
<hr/>					
VEGFA	FOS	HSP90AA1	JUN	EGR1	ATF3
CCNL1	RPL23	MALAT1	IER2	PPP1R15A	FOSB
DNAJB1	DDX5	HNRNPBL1	BHLHE41	NFKBIZ	JUND
RPS20	RPS11	MCL1	TRA2B	BTG2	YBX3
VMP1	ZFP36L1	HSP90AA1	NFKBIA	NEAT1	FAM13A
<hr/>					
PLVAP	A2M	HSPG2	CD93	CD34	PECAM1
VWF	CLEC14A	SPARC1	LDB2	GSN	ESM1
ROBO4	ENG	FLT1	MGP	SOX18	KCNN3
SLC9A3R2	PDGF	ERG	GDF6	RPBP7	FAM167B
ADGRF5	PCDH17	DLL4	ANGPT2	EDNRB	COL21A1
<hr/>					
TUBA1B	TOP2A	IGFBP3	ANXA2	TK1	ANLN
S100A11	PTTG1	LGALS1	BIRC5	TNFRSF12A	EMP3
MKI67	S100A10	TPX2	PIMREG	SPC25	PBK
NMU	CCNA2	STMN1	ACTB	GTSE1	TUBB
CAV1	H2AFZ	ACTG1	UBE2T	CKAP2L	ESCO2

T77: 807 cells; 5 programs



T77_1; T77_2; T77_3; T77_4; T77_5

VIM	CAV1	TMSB10	S100A6	LGALS1	IFTM3
UBC	ANXA2	RRAD	RPS8	BACE2	SOCS3
RPS2	RPL18A	ZFAS1	NNMT	FAM107A	YBX3
MYC	RPL36	FOS	PLP2	RPS19	DUSP1
RPL10	PNRC1	RPL41	DDIT4	RPS18	RPS5
HLA-DPA1	HLA-DRA	LYZ	C1QC	ANKRD22	HLA-DPB1
C1QQA	C1Q1B	VSG14	CYBB	CFD	RNASE6
AP0E	CSF1R	TYROB9	LAPTM5	CTSS	FCER1G
C1orf162	TREM2	HLA-DRB5	CD14	RGS2	MS4A7
CT53	LILRB3	RAB31	C3AR1	ELMO1	MAFB
PTPRC	CD52	GZMA	NKG7	HCST	CYTIP
CCL5	CTSW	CD3E	CST7	RAC2	KLRD1
TRBC1	GZMM	TRAC	CD247	GPR65	ARHGO1B
RUNX3	ITGA4	ARL4C	DUSP2	SH2D2A	CXCR4
CD69	SAMD3	CD48	CCL4	PRF1	S100A4
PIGR	WIFDC2	SLPI	SLC34A2	PRR15	SLU
TEAD2	DBN1	ADGRF1	RBP4	ITGB8	TACSTD2
GALNT5	SLC44A4	PRR15L	SPP1	FOXC1	SOSTD1C1
AGR2	KRT19	TOB1	CFH	AGR3	APLP2
PPIC	CCND2	TMEM47	SORT1	SCNN1A	MDK
NAT8	SLC22A6	GPX3	CYP4A11	PCSK1N	SMIM24
SLC6A18	AMN	CXCL14	CUB1	PEPB1	PDZK1IP1
ACSM2B	APOM	KHK	PDZK1	AZGP1	MT-CO1
UQCRCQ	BBXO1	DAB2	AGT	TXN	BHMT
AQP1	TM4SF5	AOC1	SLC22A11	SLC39A5	AGXT2


Figure S6-S16 Gene expression within each gene expression program in each sample.

Heatmap showing expression of genes within each gene expression program (GEP) across single cells in each tumor sample. Randomly selected 5% cells for each program are shown, with top 30 signature genes showed on the right. cNMF analysis was performed in 43 tumor samples separately using the optimal number of NMF components (k-value).

Figure S17 Hallmark pathways enrichment of six malignant meta-programs.

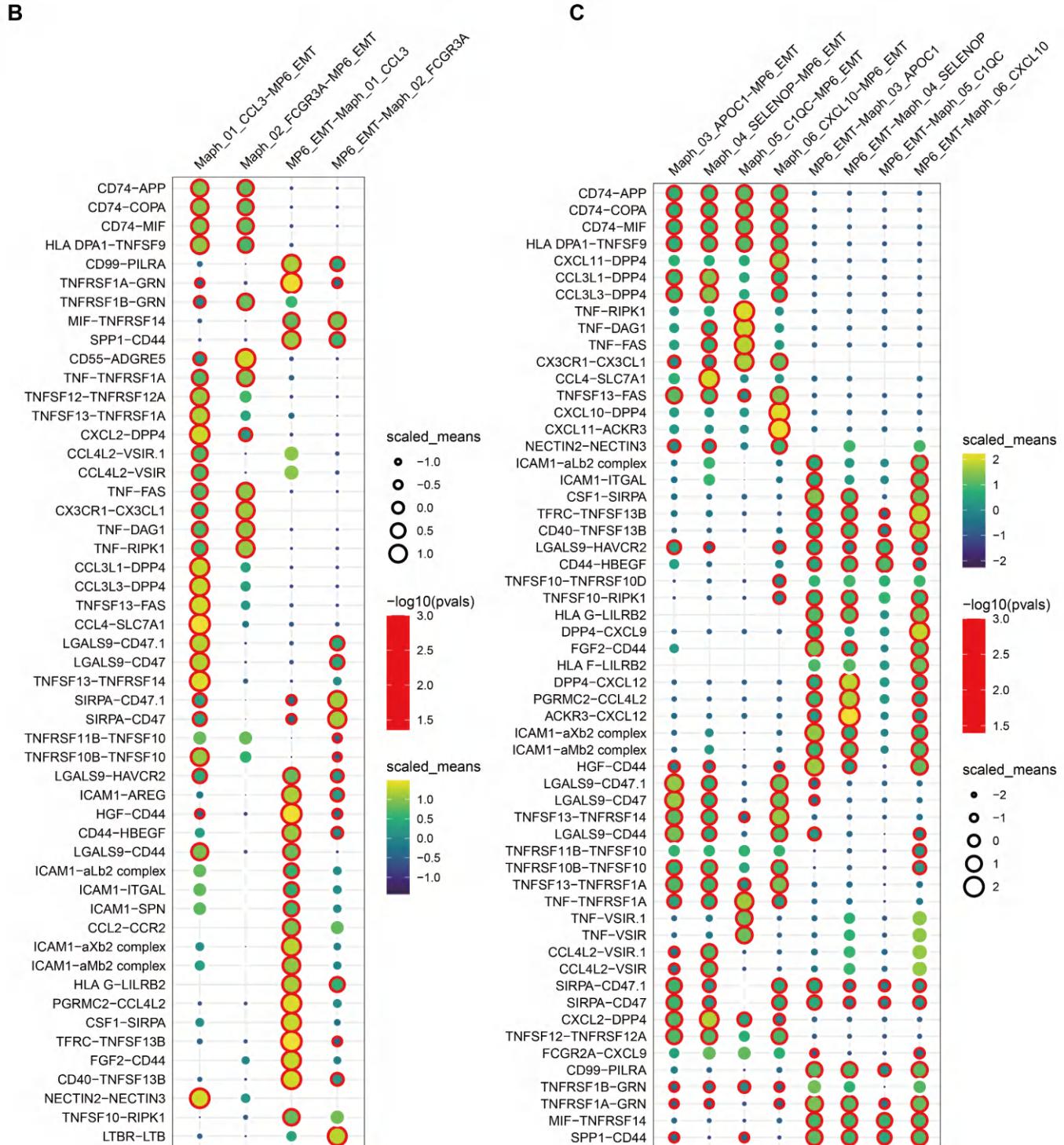
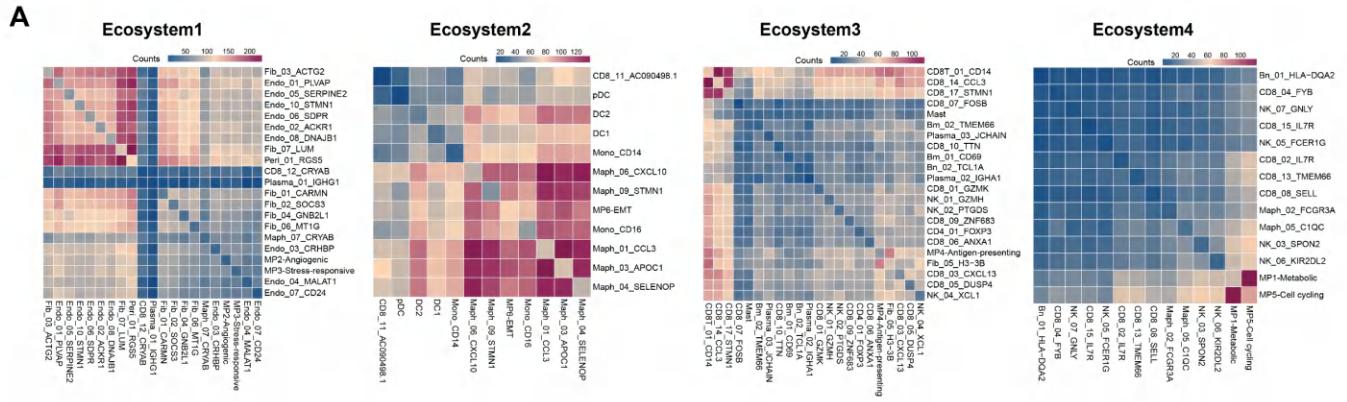
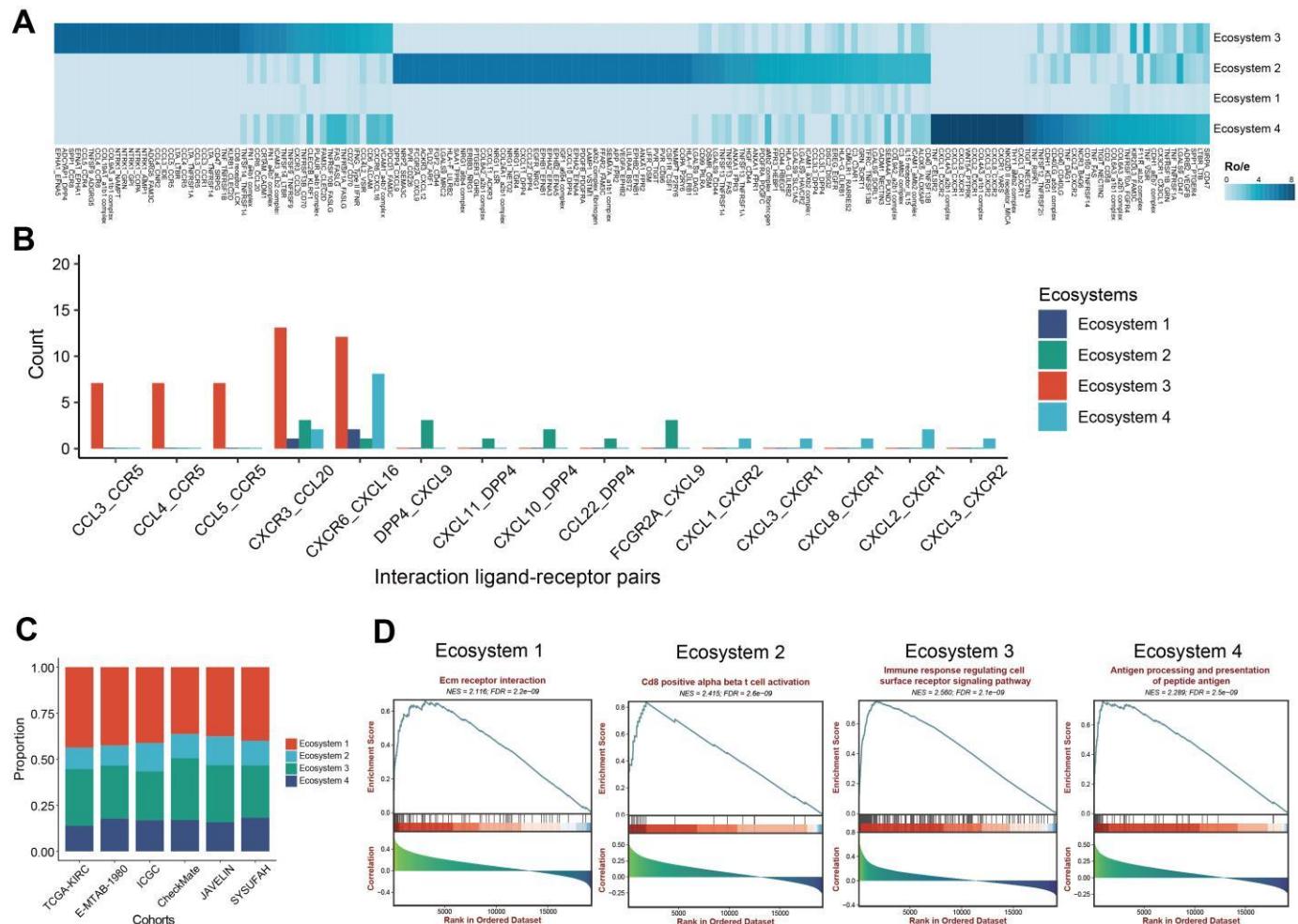


Diverging bar plots showing differences in pathway activities scored per cell by GSVA between program tumor cells and non-program tumor cells. t value of GSVA score was corrected for patient of origin. UV, ultraviolet; dn, down; v1, version 1; v2, version 2.

Figure S18 Distributions and clinical associations of six program tumor cells.


(A) tSNE plot showing clusters of malignant epithelial cells (left), with colored by enrichment score of each meta-program (right). (B) Boxplot showing the CytoTRACE score (left) and the proportion of program cells

for each tumor ($n = 43$) (right) among six MPs. (C) Boxplots showing proportion of six malignant epithelial cells in different ICB treatment, T stage, N stage, and M stage groups. (D) Heatmap showing the normalized enrichment scores for six MPs in each tumor. All samples are distinctly assigned to a specific tumor state.

Figure S19 Analysis of ligand-receptor interactions in tumor ecosystems using CellphoneDB.

(A) Heatmaps of L-R interactions across four tumor ecosystems. Heatmaps display the intensity of L-R interactions within four distinct tumor ecosystems, labeled Ecosystem1 through Ecosystem4. The color scale ranges from blue (low interaction) to red (high interaction), with the counts of interactions indicated by the color intensity. These heatmaps highlight the heterogeneity and unique interaction profiles of each tumor microenvironment. (B) Dot plot of L-R interactions between EMT tumor cells and M1 macrophages in Ecosystem2. This dot plot details the interaction significance and expression levels of L-R pairs between EMT tumor cells and M1 macrophages within Ecosystem2. The dot size denotes the $-\log_{10}$ (p-value), reflecting the statistical significance of each interaction, with larger dots indicating more significant findings. The color of the dots varies from green to red, representing the scaled mean expression levels from low to high, respectively. Key interactions such as CD74-APP, CD74-MIF, and TNF-FAS are highlighted, showing their relevance in these ecosystems. (C) Dot plot of L-R interactions between EMT tumor cells and M2 macrophages in Ecosystem2. Mirroring the structure of (B), this dot plot shows L-R interactions between EMT tumor cells and M2 macrophages in Ecosystem2. It uses the same conventions for dot size and color coding to indicate statistical significance and expression levels. This panel focuses on illustrating the distinct interaction patterns that may influence the dynamics within the tumor microenvironment specifically involving M2 macrophages. Notable interactions include TNF-FAS, ICAM1-ITGAL, and CXCL12-CXCR4, which may play critical roles in the tumor microenvironment dynamics of these ecosystems.

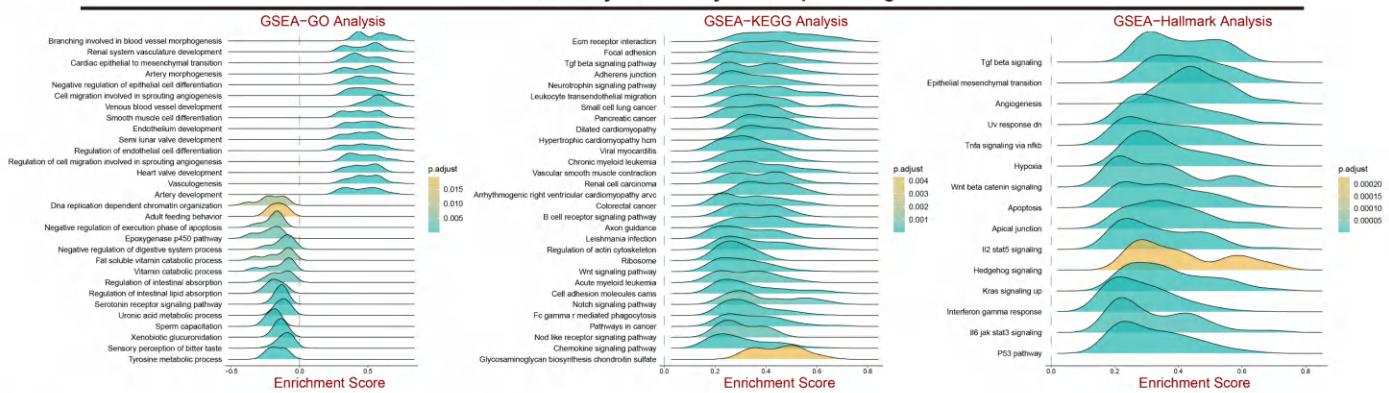
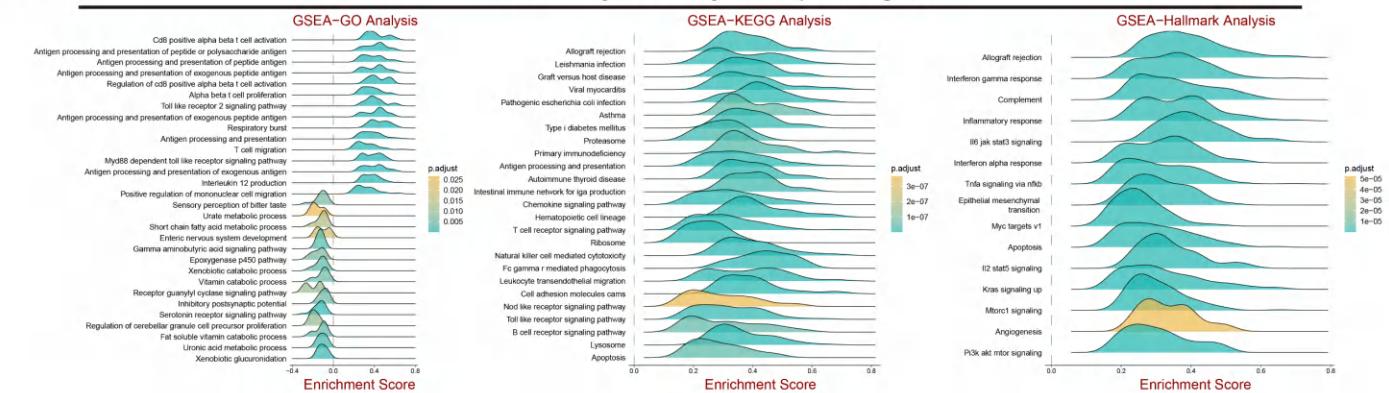
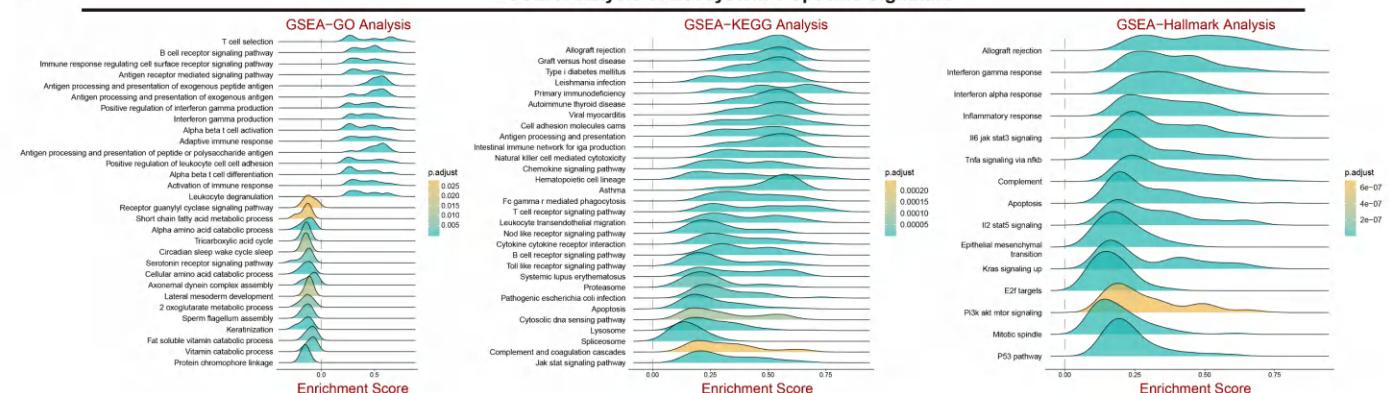


Figure S20 Ligand-receptor interactions, distribution, and signaling pathways across tumor ecosystems.

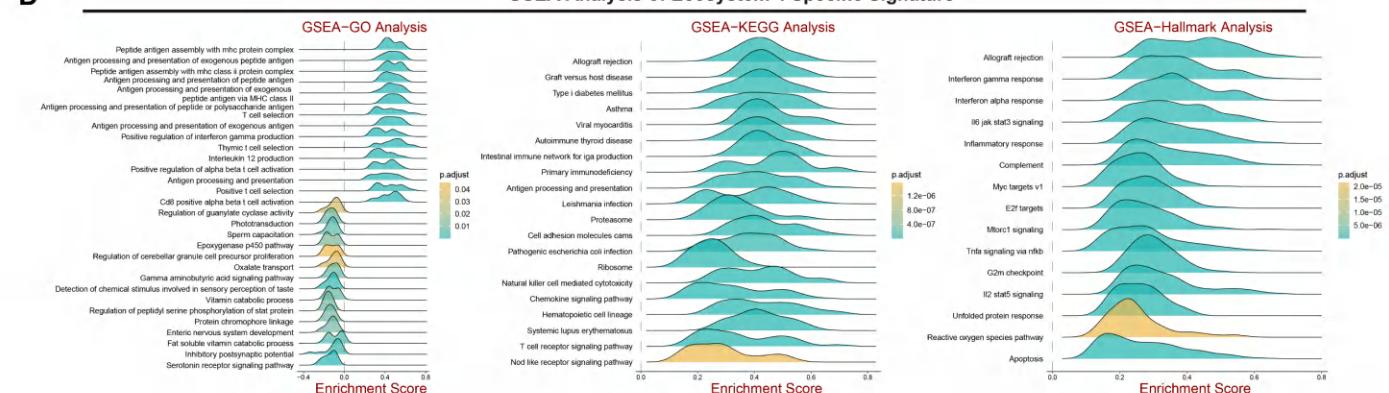
(A) Heatmap showing enriched L-R pairs in four specific ecosystems, colored coded by $R_{o/e}$ enrichment values. L-R pair with $R_{o/e} > 1$ was assumed to enriched in a specific ecosystem. (B) Barplots showing the frequency of key chemokines/chemokine receptors pairs significantly enriched in four distinct ecosystems. (C) Stacked bar chart showing the proportional distribution of four tumor ecosystems in five independent cohorts (TCGA, E-MTAB-1980, ICGC, CheckMate, JAVELIN, and SYSUFAH). (D) GSEA plot visualizing significantly enriched hallmark signaling pathways of four tumor ecosystems. The normalized enrichment score (NES) and GSEA false discovery rate (FDR) are indicated for key pathways. Pathways with $|NES| > 1$ and $FDR < 0.05$ were deemed significant.


A

GSEA Analysis of Ecosystem 1 Specific Signature


B

GSEA Analysis of Ecosystem 2 Specific Signature


C

GSEA Analysis of Ecosystem 3 Specific Signature

D

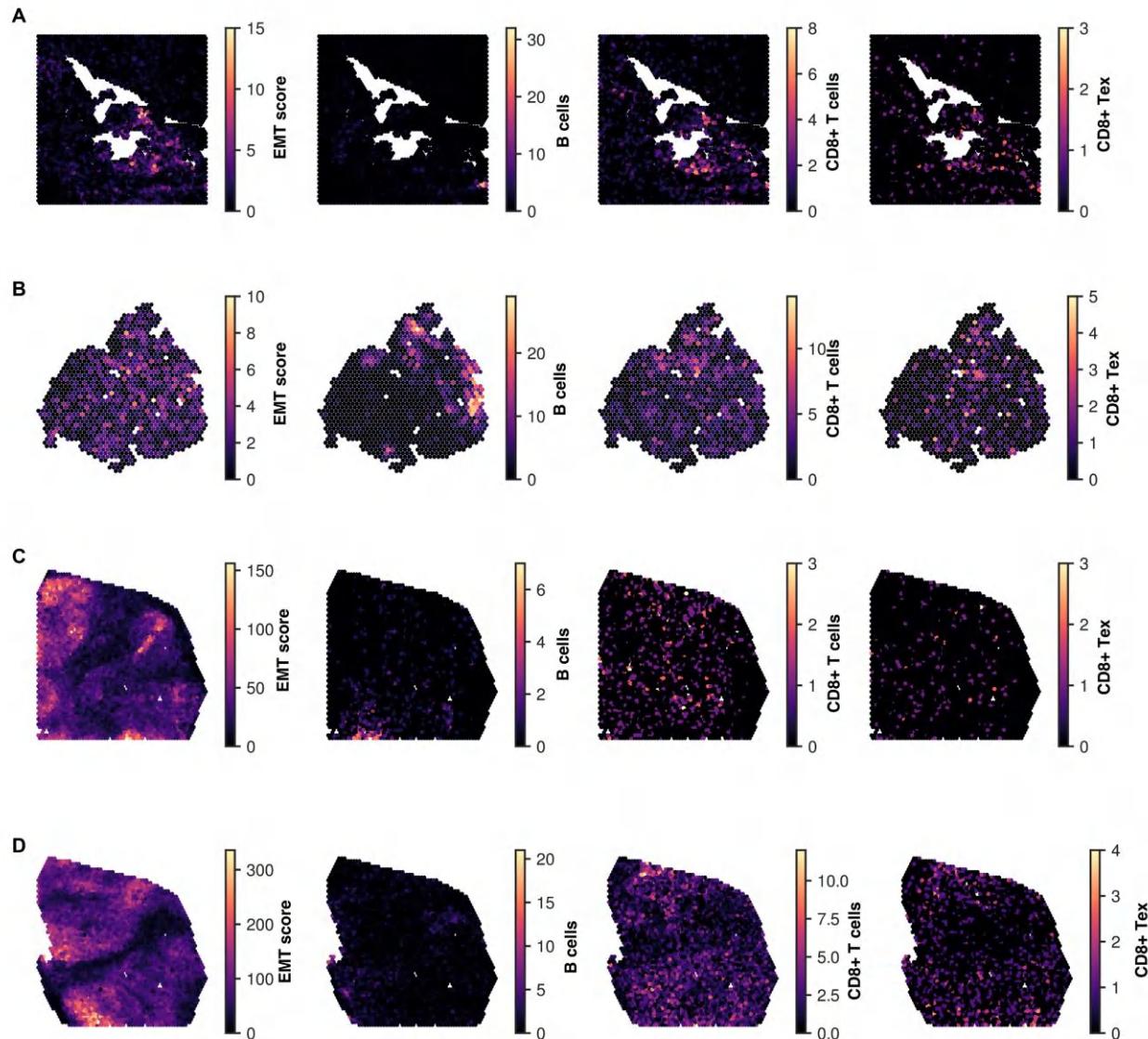
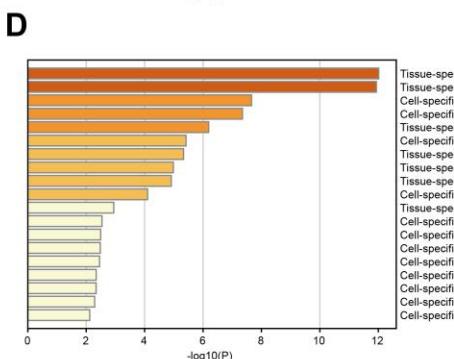
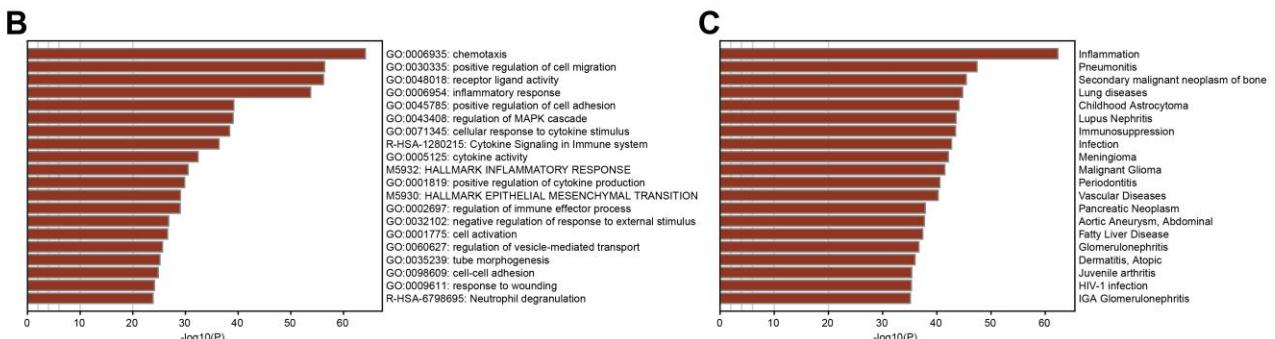
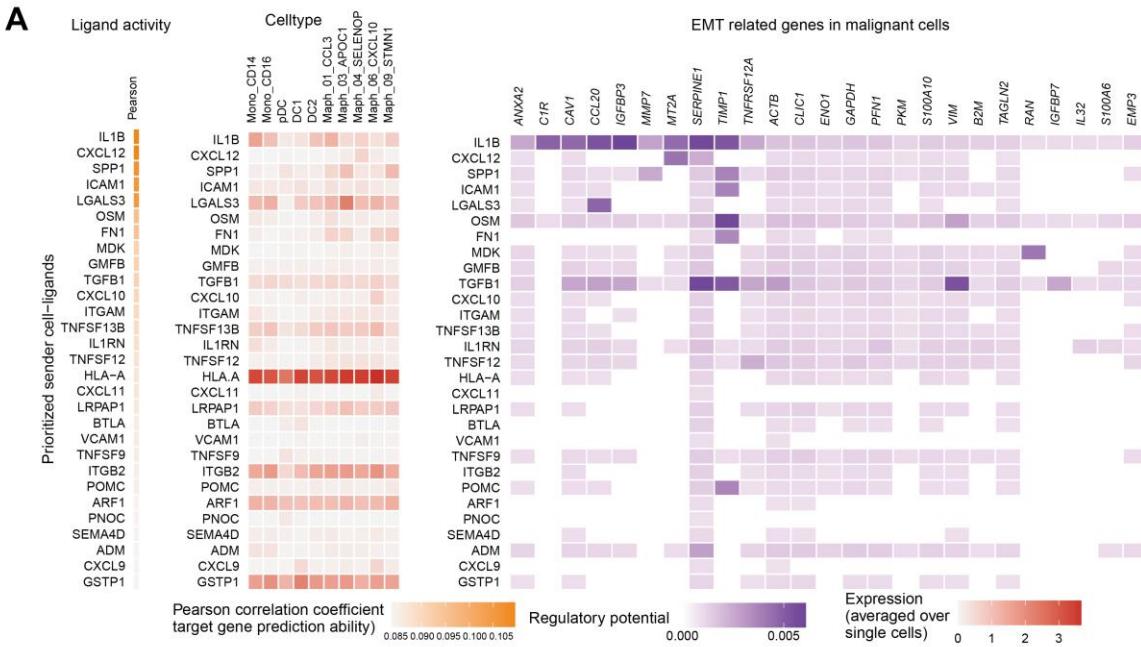
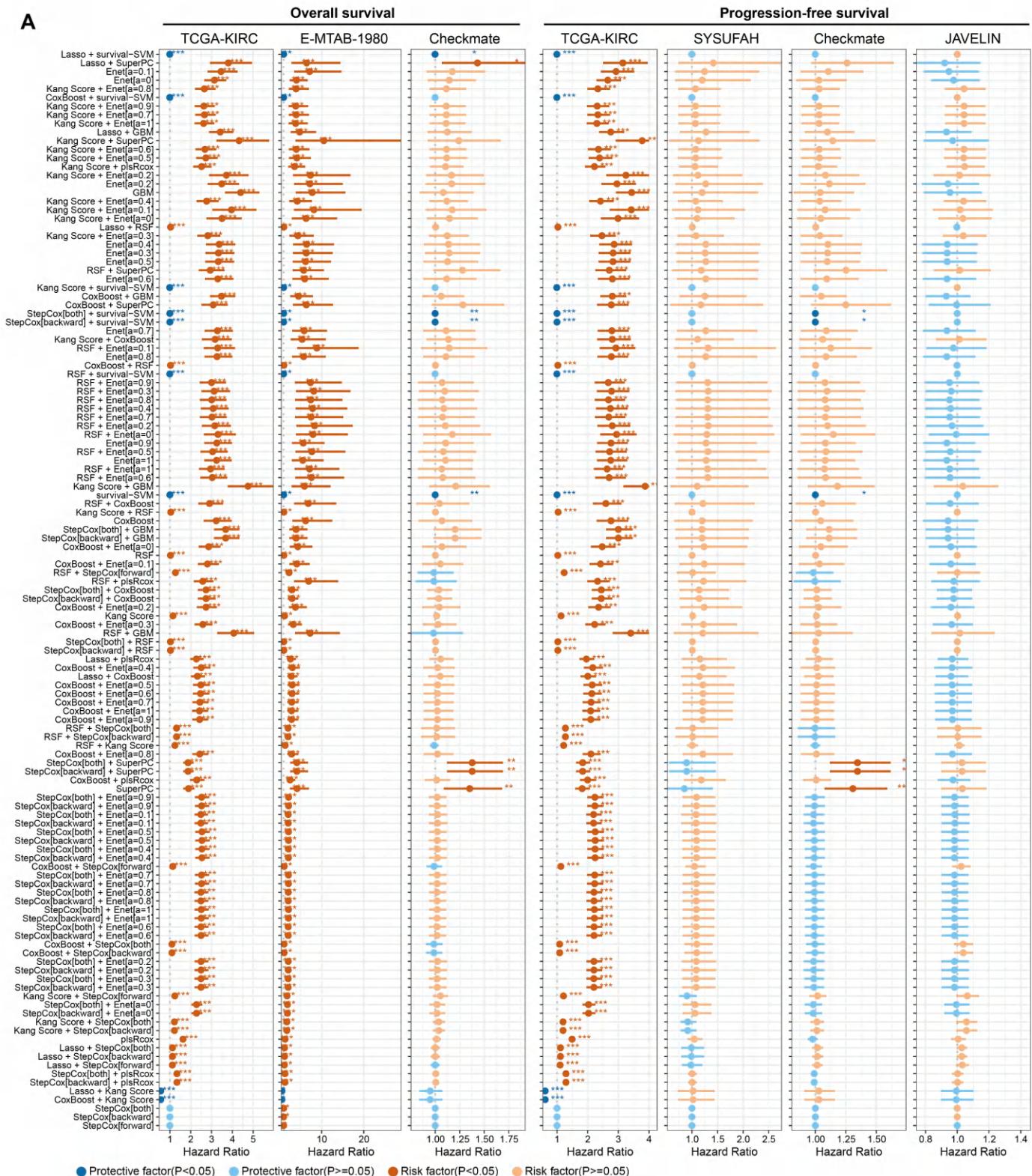

GSEA Analysis of Ecosystem 4 Specific Signature

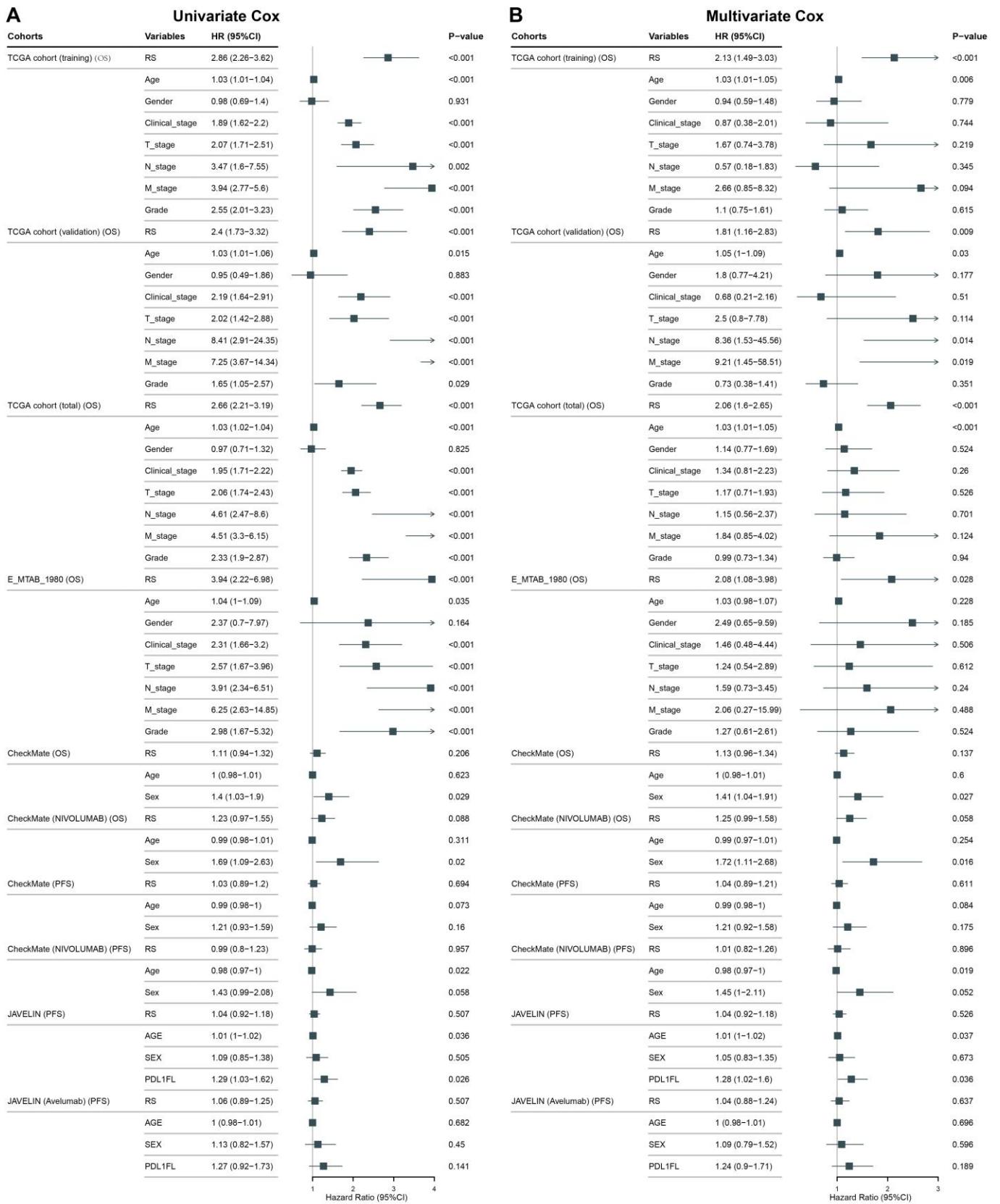
Figure S21 GSEA ridge plot analysis of tumor ecosystem signatures across GO, KEGG, and Hallmark gene sets.




(A-D) Ridge plots visualize the enrichment patterns of four tumor ecosystem signatures (Ecosystems 1-4)

against gene sets from GO, KEGG, and Hallmark databases using Gene Set Enrichment Analysis (GSEA). Each “ridge” represents the distribution of enrichment scores for a significantly enriched pathway, where the peak corresponds to the maximum enrichment score (ES) and the width reflects the density of genes contributing to the enrichment. The x-axis indicates the ES (positive/negative values denote up-/down-regulation in the signature), and the y-axis lists enriched pathways. Color intensity represents the statistical significance. Pathways with $|NES| > 1$ and $FDR < 0.05$ were deemed significant. The analysis reveals distinct biological functions associated with each ecosystem.


Figure S22 Spatial co-localization analysis between EMT-high tumor cells and specific immune cell types.

(A-D) Representative spatial transcriptomics map showing the distribution of EMT-high tumor cells, B cells, CD8+ T cells, and exhausted CD8+ T cells within the tumor microenvironment. Color gradient indicates signature score intensity. EMT-high tumor cells exhibit spatial proximity to CD8+ T cells and exhausted CD8+ T cells.


Figure S23 NicheNet analysis and functional enrichment of the ecosystem 2 signature.

(A) Outcome of predicted NicheNet's ligand activity by myeloid cells on EMT related genes. Heatmap showing the Pearson correlation indicates the target genes prediction ability of each ligand, and better predictive ligands are thus ranked higher. (B-D) Metascape enrichment analysis of the signature associated with ecosystem 2. Significant enrichments are shown for (B) epithelial-mesenchymal transition (EMT)-related pathways, (C) immunosuppression-related pathways, and (D) myeloid cell-related pathways. The consistent enrichments across categories validate the robustness of the signature. Metascape terms with adjusted $P < 0.05$.

Figure S24. Assessment of prognostic model performance through forest plot and 10-fold cross-validation.

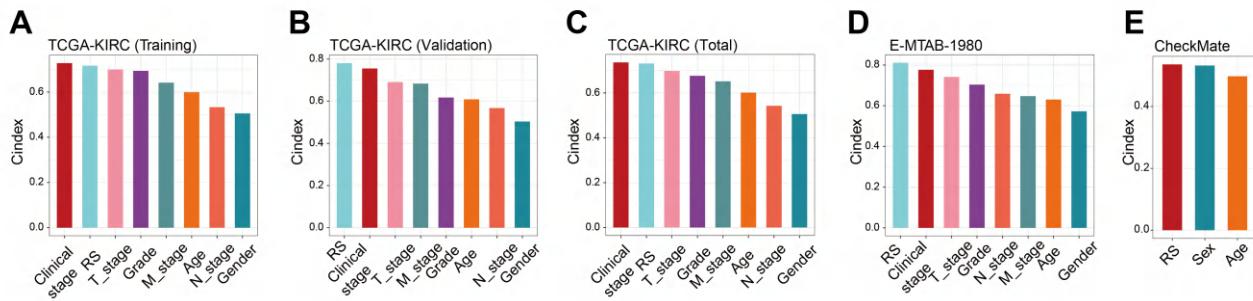
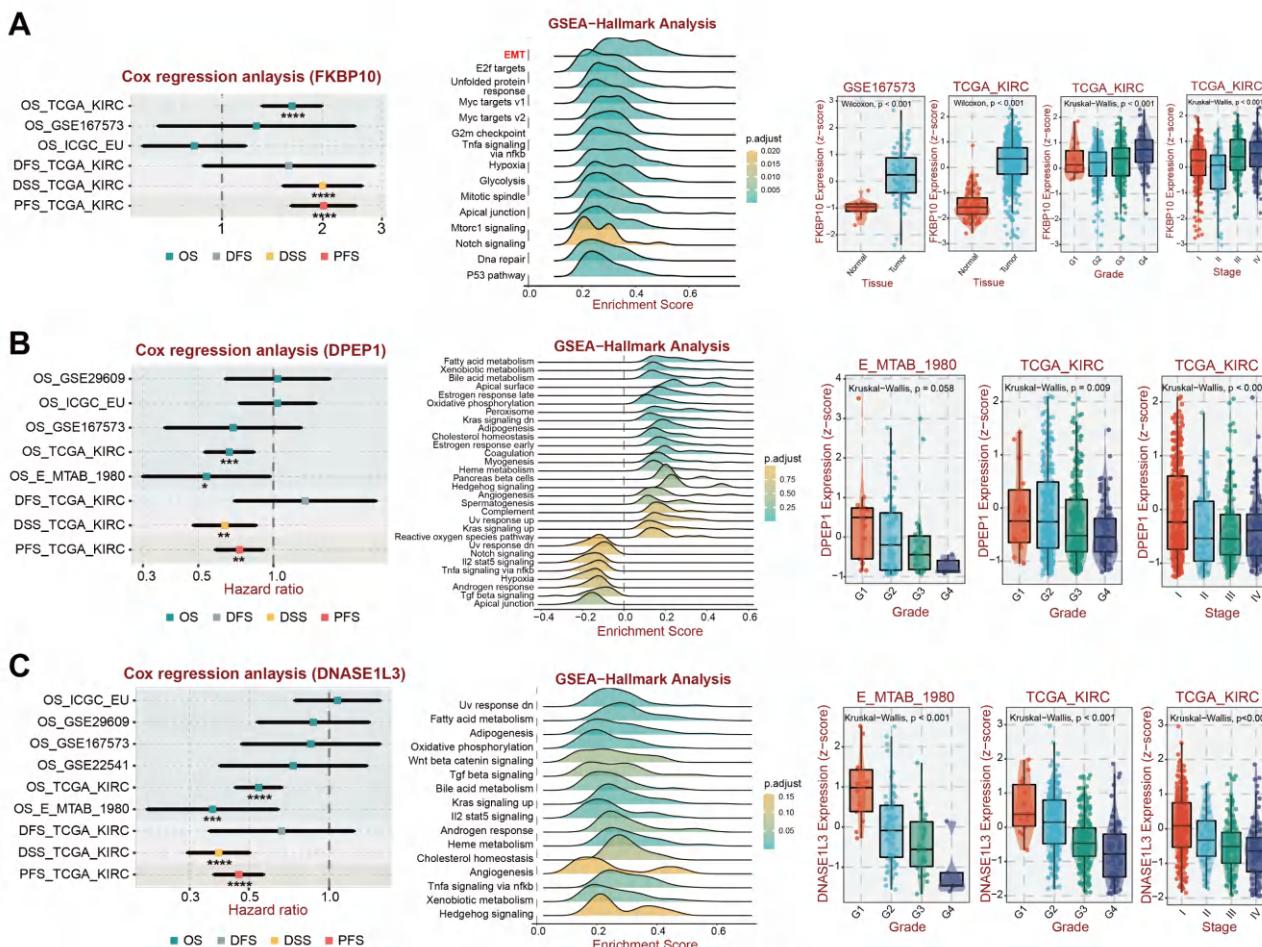
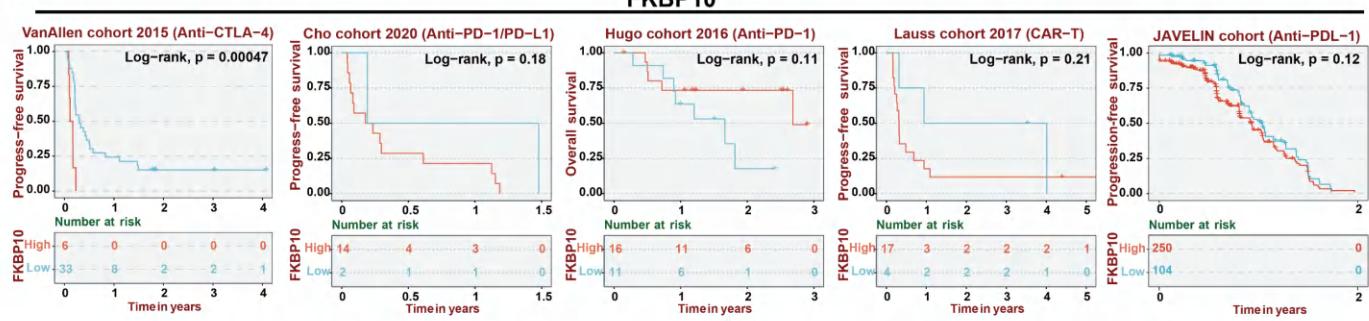
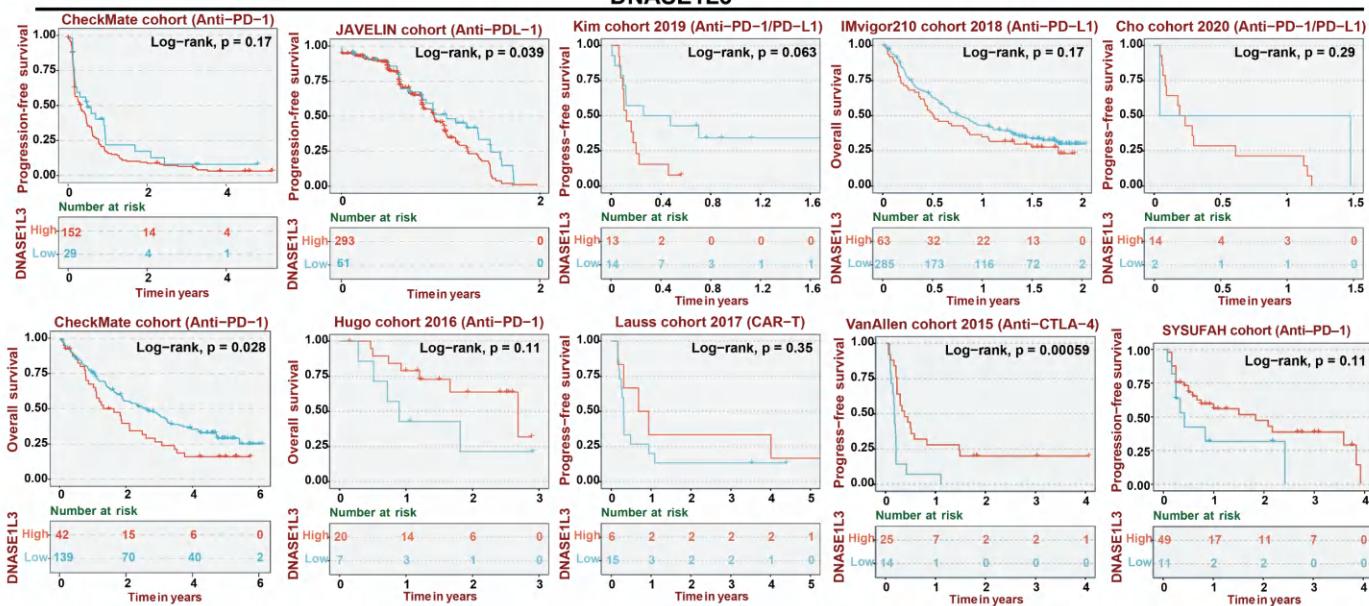

(A) Forest plot of hazard ratios for 126 prognostic models across multiple validation cohorts. The prognostic performance of each model is visualized by its HR (with 95% confidence intervals) for overall survival (OS) in the TCGA-KIRC, EMTAB-1980, CheckMate cohorts and progression-free survival (PFS) in the TCGA, SYSUFAH, CheckMate, JAVELIN cohorts. Each horizontal line represents the HR and confidence interval for a single model within a specific cohort and endpoint. The color of each marker indicates the effect direction and statistical significance: red ($HR > 1, P < 0.05$), light red ($HR > 1, P \geq 0.05$), blue ($HR < 1, P < 0.05$), light blue ($HR < 1, P \geq 0.05$). The vertical line (line of no effect) is set at $HR = 1$. Statistical significance was defined as a two-sided $P < 0.05$. Abbreviations: HR, hazard ratio; TCGA, The Cancer Genome Atlas. (B) Parity plot from 10-fold cross-validation of the optimal model, comparing the actual versus predicted prognostic values for each fold. Markers represent individual folds, and the solid diagonal line denotes the ideal 1:1 relationship. The close alignment of data points to the diagonal indicates consistent model performance across different data subsets. (C) Coefficient of determination (R^2) for each of the 10 cross-validation folds. The average R^2 value is 0.847, indicating that the model explains 84.7% of the variance and demonstrates robust predictive capability.

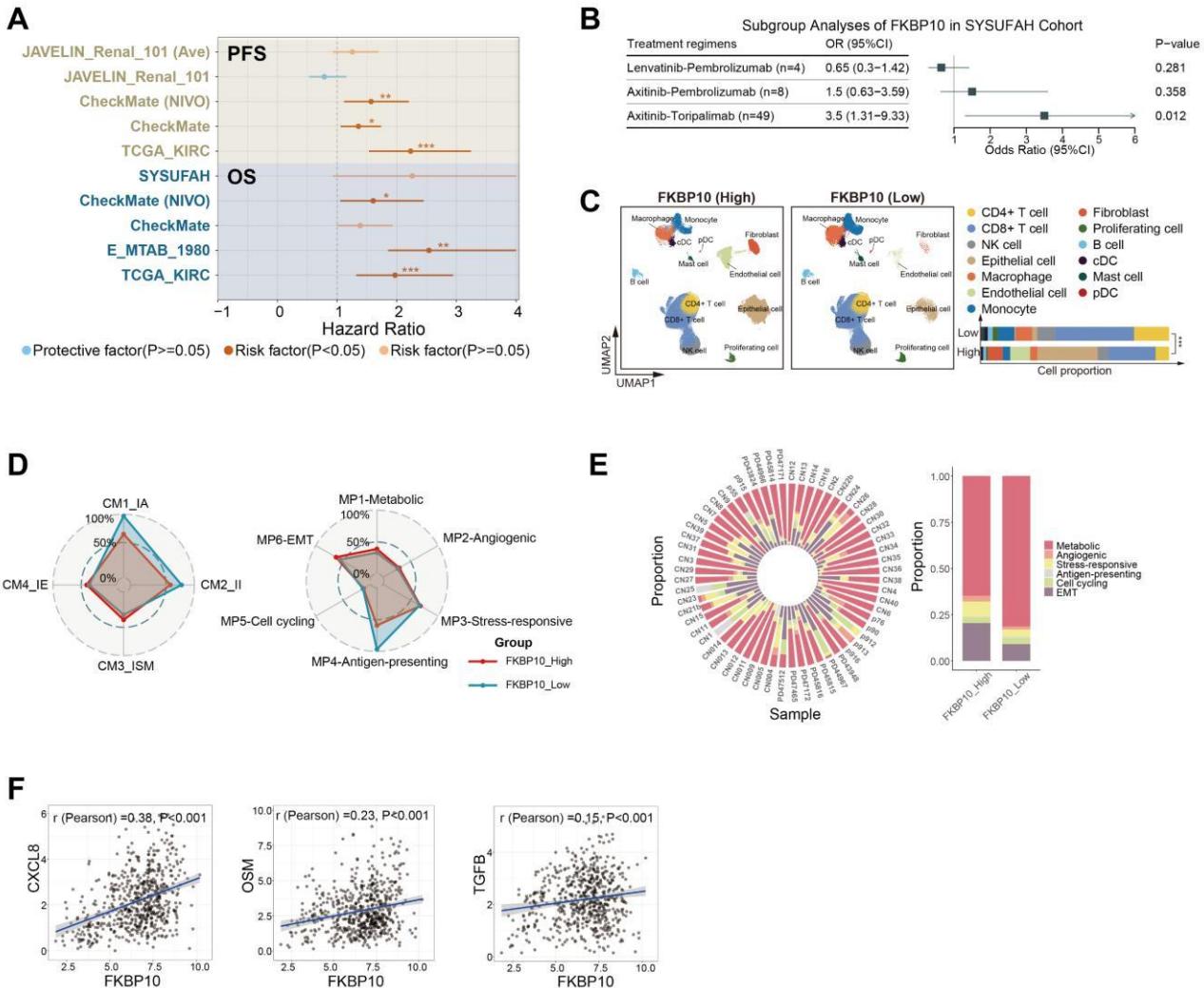
Figure S25 Forest plots of univariable and multivariable Cox regression analyses for the prognostic model across multiple cohorts.


(A-B) The prognostic value of the risk score (RS) derived from the model and key clinical variables was assessed in the TCGA, E-MTAB-1980, CheckMate (OS: overall survival), CheckMate (PFS: progression-free survival), and JAVELIN cohorts. For each cohort, panel (A) shows the univariable analysis results, and panel

(B) shows the multivariable analysis results. Hazard ratios (HRs) with 95% confidence intervals (CIs) are displayed both graphically (squares and horizontal lines) and numerically. The vertical grey line represents the null effect (HR = 1). A HR > 1 indicates a worse prognosis (risk factor), while an HR < 1 indicates a better prognosis (protective factor). Analyses were performed using the survival package in R. The specific statistical methods and sample sizes for each cohort are provided in the Methods section. Abbreviations: CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.



Figure S26 Validation and evaluation of ISM-EMTRS prognostic potentials.

(A-E) Histograms show the comparisons between performance of ISM-EMT-RS and other clinical variables in predicting prognosis.


Figure S27 Validation of the role of FKBP10, DPEP1 and DNASE1L3 in ccRCC across 6 cohorts.

(A-C) (Left) Cox regression analysis revealed significant associations between the expressions of FKB10, DPEP1, and DNASE1L3 with clinical outcomes such as Overall Survival (OS), Disease-Free Survival (DFS), Disease-Specific Survival (DSS), and Progression-Free Survival (PFS) across datasets like GSE29609 (n = 39), ICGC_EU (n = 91), GSE167573 (n = 63), E-MTAB-1980 (n = 101), GSE22541 (n = 68) and TCGA_KIRC (n = 533). (Middle) GSEA-Hallmark analysis identified key pathways enriched in correlation with these genes, including epithelial-mesenchymal transition, fatty acid metabolism and oxidative phosphorylation, and. (Right) Boxplots showed increase expression of FKB10 and decreased expression of DNASE1L3, DPEP1 from early to advanced clinical stages or pathological grade. Significance was assessed using the Kruskal-Wallis test (multi-group comparisons) and Wilcoxon test (pairwise comparisons). All statistical tests were two-sided, $P < 0.05$.

A**B****C**

Figure S28 Association of FKBP10, DPEP1, and DNASE1L3 expression with survival outcomes in immunotherapy cohorts.

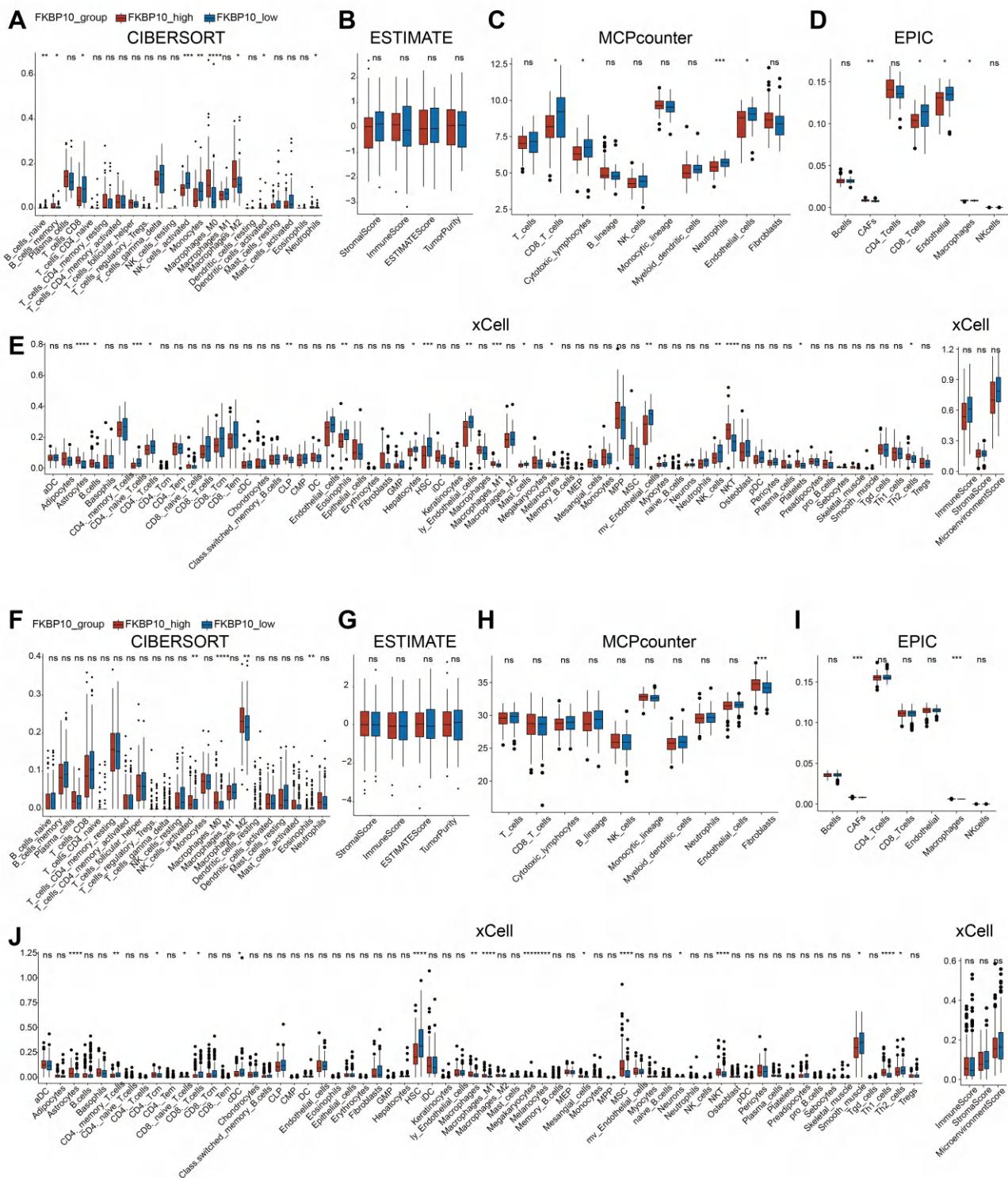

(A-C) Kaplan-Meier curves illustrate progression-free survival (PFS) and overall survival (OS) for patients across multiple cohorts treated with immune checkpoint inhibitors. Patients were stratified into high- and low-expression groups based on the optimal cut-off value for each gene (FKBP10, DPEP1, DNASE1L3). The log-rank test was used to compare survival differences between groups.

Figure S29 FKBP10 is an independent prognostic factor and remodels the tumor immune microenvironment in ccRCC.

(A) Multivariable Cox regression forest plot demonstrating that high expression of FKBP10 is an independent risk factor in ccRCC patients across the TCGA-KIRC, E-MTAB-1980, CheckMate, and JAVELIN cohorts. Analyses were adjusted for age, gender, clinical stage, pathological stage, and PD-L1 status. (B) Subgroup analysis of an independent validation cohort (SYSUFAH, n = 61) receiving different immunotherapy regimens. FKBP10 was a significant risk factor in the Axitinib plus Toripalimab treatment group (n = 49). No significant association ($P > 0.05$) was observed in the Lenvatinib plus Pembrolizumab (n = 4) or Axitinib plus Pembrolizumab (n = 8) groups, likely due to limited sample size. (C) UMAP visualization of tumor-infiltrating immune cells (External validation in Bi, Li, and Obradovic datasets, cells = 429,854) with FKBP10-high/-low grouping. Bar plot (right) showed the specific cell proportion of FKBP10-high/-low groups (χ^2 test, $P < 0.001$). (D-E) Analysis of TIME subtypes and malignant cell states in the independent external validation cohort (n = 62). (D) The proportion of antitumor TIME subtypes (CM1-IA and CM2-II) was significantly reduced, while the immunosuppressive CM3-ISM subtype was significantly increased in FKBP10-High tumors. (E) The proportion of tumor cells in the low-malignancy MP1-Metabolic state was decreased, whereas the EMT state was significantly increased in the FKBP10-High group (Chi-square test, $P < 0.05$ for all comparisons). (F) Correlation plots between FKBP10 and CXCL8, OSM, and TGFβ.

Correlation analysis between FKBP10 expression and cytokine levels (CXCL8, TGFB, OSM). FKBP10 expression showed the strongest positive correlation with CXCL8 among the cytokines tested.

Figure S30 Analysis of immune cell infiltration stratified by FKBP10 expression levels in E-MTAB-1980 and Checkmate cohorts.

(A-E) The tumor immune microenvironment was evaluated using multiple algorithms (CIBERSORT, ESTIMATE, MCPcounter, EPIC, xCell) in E-MTAB-1980. Patients within the cohort were stratified into high and low FKBP10 expression groups. In the E-MTAB-1980 cohort, high FKBP10 expression was associated

with a significant decrease in T cells and an increase in macrophages (particularly M2 macrophages) and cancer-associated fibroblasts (CAFs). (F-J) The tumor immune microenvironment was evaluated using multiple algorithms in Checkmate cohort. In the Checkmate cohort, high FKBP10 expression was associated with a significant decrease in T cells and an increase in M2 macrophages, as well as CAFs. Data are presented as mean \pm SD. Statistical significance was determined by the Wilcoxon rank-sum test ($*P < 0.05$, $**P < 0.01$, $***P < 0.001$).

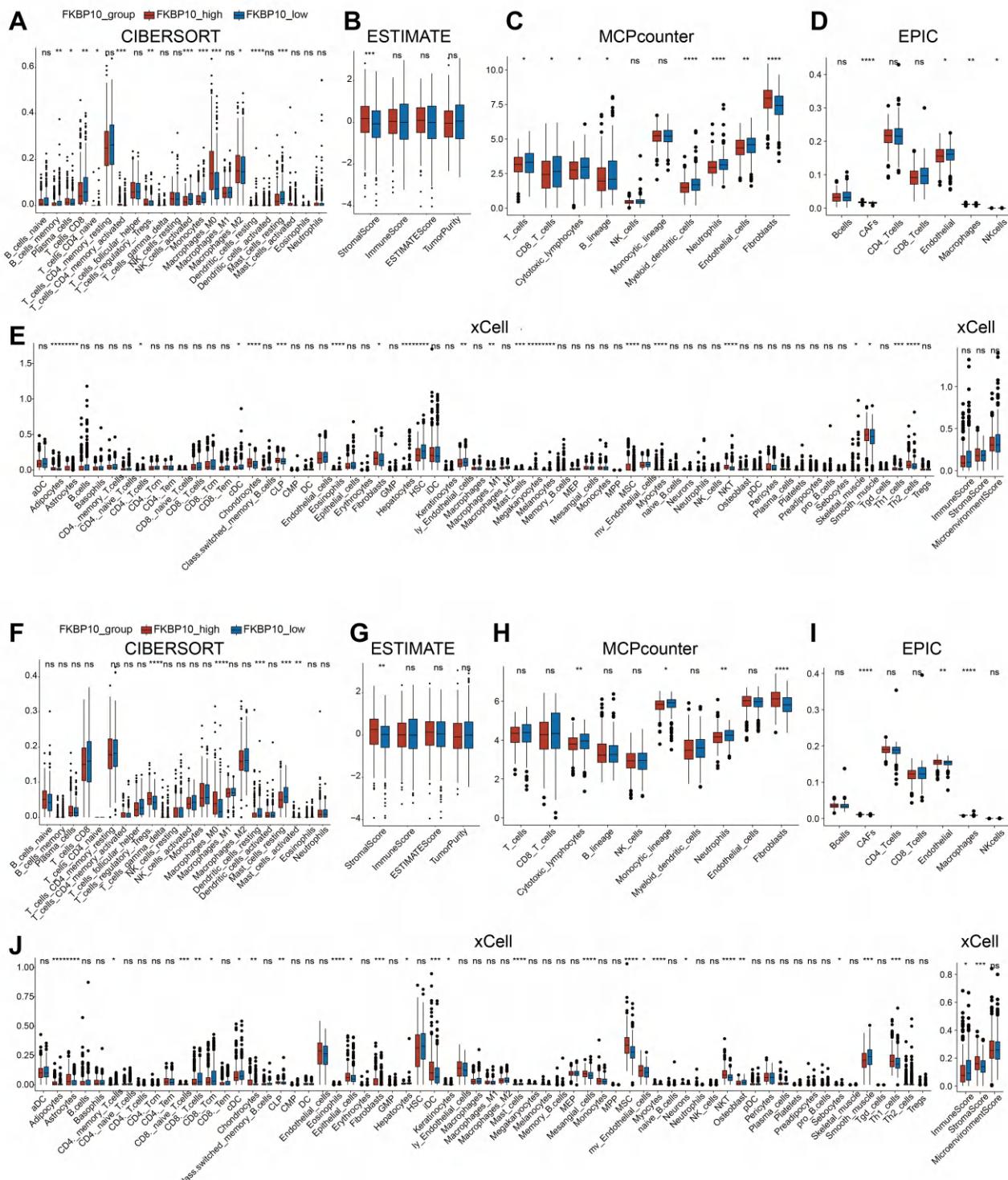
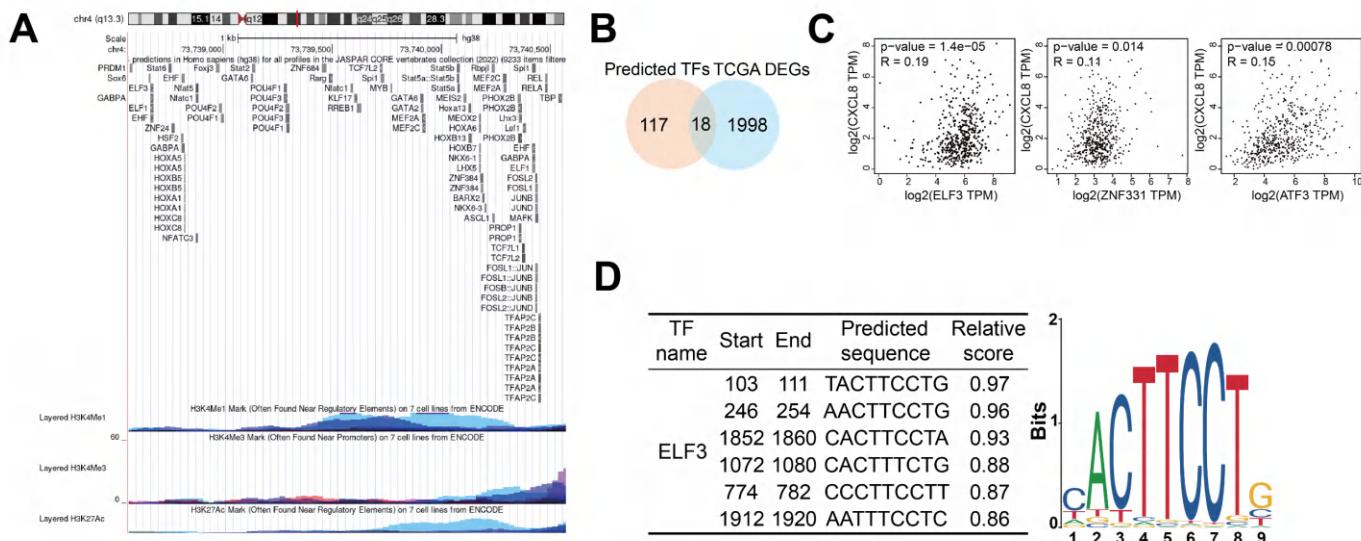



Figure S31 Analysis of immune cell infiltration stratified by FKBP10 expression levels in TCGA-KIRC

and JAVELIN cohorts.

(A-E) The tumor immune microenvironment was evaluated using multiple algorithms in TCGA-KIRC cohort. In the TCGA-KIRC cohort, the high FKBP10 group similarly showed reduced T cells, increased M2 macrophages and CAFs, and a significantly elevated stromal score. (F-J) The tumor immune microenvironment was evaluated using multiple algorithms in JAVELIN cohort. In the JAVELIN cohort, the high FKBP10 group exhibited T cell reduction, increased CAFs, a significantly decreased immune score, and a significantly increased stromal score. Data are presented as mean \pm SD. Statistical significance was determined by the Wilcoxon rank-sum test (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$).

Figure S32 Analysis of transcription factor binding and prioritization of a key regulator at the CXCL8 locus.

(A) Analysis of ENCODE ChIP-seq data using MACS2 ($q < 0.01$) identifies 135 transcription factors (TFs). These TFs demonstrate coordinated occupancy at chromatin domains marked by active promoters (H3K4me3+/H3K27ac+) and putative enhancers (H3K4me1+) within the CXCL8 locus, spanning -2000 bp to +100 bp surrounding the transcription start site (TSS). (B) Venn intersection ($n = 18$ genes) between TCGA differentially expressed genes ($|\log_{2}FC| > 1$, FDR < 0.05) and predicted TFs. (C) Among these 18 genes, ELF3, ZNF331 and ATF3 demonstrate significant co-expression with CXCL8 ($P < 0.001$). (D) JASPAR analysis prioritizes ELF3 as the dominant regulator, showing both high binding potential (relative score > 0.85) and conserved motif at the CXCL8 promoter (right panel).

Reference

1. Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. *Proc Natl Acad Sci U S A*. 2021; 118.
2. Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, Riding AM, et al. Spatiotemporal

immune zonation of the human kidney. *Science*. 2019; 365: 1461-6.

3. Coorens THH, Treger TD, Al-Saadi R, Moore L, Tran MGB, Mitchell TJ, et al. Embryonal precursors of Wilms tumor. *Science*. 2019; 366: 1247-51.
4. Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. Human genomics. The human transcriptome across tissues and individuals. *Science*. 2015; 348: 660-5.
5. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst*. 2019; 8: 329-37.e4.
6. Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. *Science*. 2021; 374: abe6474.
7. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. *Science*. 2020; 367: 405-11.
8. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nat Commun*. 2013; 4: 2612.
9. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods*. 2015; 12: 453-7.
10. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. *Genome Biol*. 2016; 17: 218.
11. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. *Elife*. 2017; 6.
12. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. *Genome Biol*. 2017; 18: 220.