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Supplementary Method 

scRNA-seq Data Processing 

The initial step involved the exclusion of peripheral blood mononuclear cell data to emphasize the tumor-

infiltrating immune cells. Low quality cells (<300 or >5,000 genes detected; <500 UMIs; >20% (for tumor 

samples) or >80% (for benign samples) mitochondrial reads; >1% hemoglobin gene content) were also 

excluded before being merged together. The mitochondrial gene content restrictions were based on the 

observed mitochondrial read disparities in prior kidney scRNA-seq and bulk RNA-seq studies [1-4]. 

Subsequently, DoubletFinder was employed for potential doublet cell filtration [5]. Normalization was 

achieved using NormalizeData function, with 3,000 highly variable genes (HVGs) identified using the 

FindVariableFeatures function, and gene scaling to unit variance. Cell clusters were delineated through 

principal component analysis (PCA) of the top 20 principal components (PCs), integrating batch effect 

rectification via the harmony package. The Louvain method was employed for clustering, and dimensionality 

reduction was performed using Uniform Manifold Approximation and Projection (UMAP).  

We annotated the six major cell types identified in our dataset on the basis of well-known marker genes, 

including CD3D, CD3E, CD8A, CD4, NKG7 for T lymphoid cells; CD79A, CD79B, CD19, MS4A1 for B 

lymphoid cells; C1QA, C1QB, C1QC, CD68, ITGAX for myeloid lineage; PECAM1, KDR, AQP1, PLVAP 

for endothelial cells; COL1AL, COL3A1, ACTA2, PDGFRB for fibroblast; EPCAM, PAX8, KRT18, KRT8, 

NNMT for epithelial cells. Among these epithelial cells, malignant cells were further distinguished from non-

malignant cells by inferring large-scale CNVs using inferCNV. Non-malignant epithelial cells derived from 

normal samples were used as references for CNV estimation. 

We conducted a second round of clustering to further characterize the subpopulations of major cell types. 

Owing to the variable amount and properties of cells in each major cell type, different parameters for clustering 

were used. For the clustering of NK or T cells, the top 20 PCs were selected based on 3,000 HVGs 

(resolution=0.8). For clustering of B cells, the top 15 PCs were selected on the basis of 2,000 HVGs 

(resolution=0.6). For myeloid cells, the top 20 PCs were selected on based on 3,000 HVGs (resolution=0.5). 

For endothelial cells, the top 15 PCs were selected based on 2,000 HVGs (resolution=0.4). For fibroblasts, the 

top 15 PCs were selected based on 1,000 HVGs (resolution=0.4).  

As a result, 75 cell clusters were identified. Annotation relied on the most highly expressed immune-related 

genes in each cluster, with the gene list curated according to previous findings [6]. To facilitate data 

visualization, cells were re-clustered into five embeddings using Seurat, including (1) NK and T cells, (2) 

myeloid cells, (3) B cells, (4) endothelial cells, (5) fibroblast. Next, we used the FindAllMarkers function to 

identify differentially expressed genes (DEGs) with adjusted P<0.05 using the Bonferroni correction.  

 

CytoTRACE Stemness Analysis 

CytoTRACE was utilized to assess cellular stemness within the epithelial cluster, with higher gene counts in 

single cells indicating lesser differentiation and elevated stemness [7]. This algorithm aids in identifying genes 
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that significantly correlate with cellular gene counts and stemness, thereby enabling precise stemness scoring. 

 

Immune Infiltration Analysis 

To comprehensively characterize the immune cell composition in the tumor microenvironment, we applied 

multiple computational algorithms, including ESTIMATE, Cibersort, MCP-counter, EPIC, and xCell. These 

methods leverage distinct principles to infer immune cell abundances from bulk transcriptomic data, providing 

complementary insights into stromal, immune, and malignant cell proportions.  

The ESTIMATE algorithm employs single-sample gene set enrichment analysis (ssGSEA) to generate stromal, 

immune, and combined ESTIMATE scores, reflecting the presence of stromal and immune cells in tumor 

tissues. Tumor purity was derived from the ESTIMATE score using the formula: Tumor Purity = cos 

(0.6049872018 + 0.0001467884 × ESTIMATE score) [8]. Cibersort utilizes support vector regression to 

deconvolute expression data against the LM22 leukocyte signature matrix, quantifying 22 immune cell 

subtypes [9]. MCP-counter calculates the geometric mean of marker gene expressions to estimate absolute 

abundances of 8 immune and 2 stromal cell types [10]. EPIC employs constrained least squares regression to 

infer proportions of immune and cancer cells [11], while xCell applies ssGSEA-based enrichment to score 64 

immune and stromal cell types [12]. The integration of these methods ensures robust and complementary 

evaluation of immune infiltration. 

 

Sample Collection and Cell Culture 

ccRCC and corresponding para-carcinoma tissues were collected directly from the operating room during 

nephrectomy. At the time of specimen extraction, samples of around 1-1.5 cm were obtained by the treating 

surgeon from tumor regions and para-tumor regions (at least 1 cm apart). Once in the operating room, small 

tissue aliquots (of around 5 mm3) were separated from each sample for subsequent experiments. One aliquot 

was placed in 10% formalin for immunohistochemistry (IHC). The remainder of the tissue was placed in liquid 

nitrogen and transported on regular ice to the laboratory for subsequent quantitative real-time polymerase 

chain reaction (qPCR) and western blotting analysis. 

The human renal cell carcinoma cell lines 769-P, 786-O and OS-RC-2 were used for experimental validation. 

All cell lines were cultured in RPMI1640 Medium, supplemented with 10% Fetal Bovine Serum (FBS) and 

1% penicillin/streptomycin, and were maintained in an incubator at 37℃ and 5% CO2. Cell lines were sub-

cultured by detaching cells using 0.25% trypsin EDTA, quenching, washing, and resuspension of the cell pellet 

in fresh media. 

 

Quantitative Real-time Polymerase Chain Reaction 

Tissues were homogenized and incubated for the indicated times with either compound or vehicle, and RNA 

was isolated using a universal RNA purification kit. cDNA was generated using a reverse transcription kit. 

qPCR was executed in triplicate using SYBR Green Master Mix on Quant-Studio 5 System. Gene expression 
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levels were quantitatively assessed with the method of 2-ΔΔCt. 

 

Protein Extraction and Western Blot Analysis 

For proteins extraction, tissues or cells were homogenized in RIPA lysis buffer containing 150 mM NaCl, 1.0% 

IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris (pH 8.0), supplemented with 

protease and phosphatase inhibitors, and incubated on ice for 30 minutes to ensure complete lysis. The 

homogenates were then centrifuged to remove the cellular debris. The protein concentration in the 

supernatants was quantified using a BCA Protein Assay Kit. For electrophoresis, lysates were prepared by 

mixing 2× sample buffer (0.125 M Tris-HCl, pH 6.8, 4% SDS, 20% glycerol) enriched with 4% β-

mercaptoethanol, followed by denaturation at 100℃ for 10 minutes. Denatured proteins were resolved on 

SDS-PAGE gels and subsequently transferred onto PVDF membranes. Non-specific binding sites on the 

membranes were blocked with 5% skim milk at room temperature. Primary antibodies against FKBP10 

(1:5000), DNASE1L3 (1:1000), DPEP1 (1:2000), MEK (1:10000), ERK (1:3000), p-MEK (1:1000), p-ERK 

(1:2000), ELF3 (1:200), Vinculin (1:20000), and CXCL8 (1:1000) were applied to the blocked membranes 

and incubated overnight at 4℃. After incubating with horseradish peroxidase-conjugated secondary 

antibodies, the protein bands were visualized using the Amersham ImageQuant 800 imaging system. 

 

Immunohistochemical Staining 

Formalin-fixed, paraffin-embedded (FFPE) sections of ccRCC tissues (4 μm thickness) were subjected to IHC 

staining using standard protocols. Briefly, sections were deparaffinized in xylene and rehydrated through a 

graded ethanol series. Antigen retrieval was performed by incubating slides in citrate buffer (pH 6.0) at 95℃ 

using a microwave heating system. Endogenous peroxidase activity was quenched with 3% hydrogen peroxide, 

followed by blocking with 5% BSA. 

Primary antibodies against FKBP10 (1:200), DNASE1L3 (1:200), DPEP1 (1:1000), N-cadherin (1:4000), 

Vimentin (1:5000), and E-cadherin (1:5000) were applied to tissue sections and incubated overnight at 4℃. 

After washing with PBS, slides were incubated with HRP-conjugated secondary antibodies. 

Diaminobenzidine (DAB) was used as the chromogen, and hematoxylin was applied for nuclear 

counterstaining. 
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Figure S1 Flowchart summarizing the entire study design. 
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Figure S2 Quality control metrics of single-cell RNA sequencing data across all samples prior to filtering.   

Violin plots display the distribution of five key QC metrics for each sample: (A) nFeature_RNA: the number 

of unique genes detected per cell. A low count may indicate a damaged or low-quality cell. (B) nCount_RNA: 

the total number of molecules (UMIs) detected per cell. Extreme values (very low or very high) can suggest 

poor cell quality or the presence of multiple cells (doublets), respectively. (C) Percentage of mitochondrial 

gene: the percentage of cellular transcripts mapping to the mitochondrial genome. A high percentage is 

indicative of cellular stress or apoptosis. (D) Percentage of ribosomal gene: the percentage of transcripts 

mapping to ribosomal protein genes. (E) Percentage of hemoglobin gene: the percentage of transcripts 

mapping to hemoglobin genes. The shape of each violin represents the kernel density estimation of the data 

distribution. These metrics are crucial for identifying and removing low-quality cells to prevent technical 

artifacts from influencing downstream analyses. 
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Figure S3 Quality control metrics for single-cell RNA sequencing data after filtering. 

(A-E) Violin plots display the distribution of key QC metrics across all samples after quality filtering. Violin 

plots show number of detected genes per cell (nFeature_RNA), total UMI counts per cell (nCount_RNA), and 

the percentage of reads mapping to mitochondrial, ribosomal, and hemoglobin genes. Cells falling outside 

defined thresholds for these parameters were filtered to ensure data quality for downstream analysis. (F) 

UMAP plot showing clusters of all cells from seven public datasets before doublet cell filtration (left), and 

after doublet cell filtration (right). Dots represent individual cells, and colors represent different clusters. (G) 
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UMAP plot showing clusters of all cells, with color coded by samples. It can be seen that the Harmony 

algorithm effectively eliminates the batch effect of different samples. (H) UMAP visualization after Harmony 

integration, with cells split by dataset. Harmony effectively aligns datasets by removing technical variations 

while preserving biological structures, as evidenced by the overlapping distribution of analogous cell 

populations across samples. 

 

 

Figure S4 Comparative analysis of immune and stromal cell proportions between TLS-high and TLS-

low groups. 

(A-E) DimPlot illustrating the distribution of NK/T cells (A), fibroblasts (B), myeloid cells (C), endothelial 

cells (D), and B cells (E) across TLS-high and TLS-low groups. Cells are colored by cell type, and groups are 

segregated based on TLS signature scores. Stacked bar plot quantifying the relative proportions of each cell 

type within TLS-high and TLS-low groups. The B-cell compartment demonstrates the most notable shift, with 
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altered subset composition in TLS-high samples. Statistical significance was assessed using Chi-square test. 

TLS, tertiary lymphoid structure. (F) FeaturePlot visualization of germinal center (GC) gene expression levels 

for BCL6, AICDA, MS4A1, CD138, XBP1, and IRF4 across the B-cell subsets. Expression gradients are 

depicted from low (gray) to high (blue). (G) Spatial co-localization analysis between CM4-IE cells cells and 

specific T cell types. Representative spatial transcriptomics map showing the distribution of CM4-IE-high 

cells, CD8+ T cells, and exhausted CD8+ T cells within the tumor microenvironment. Color gradient indicates 

signature score intensity. CM4-IE-high cells exhibit spatial proximity to CD8+ T cells and exhausted CD8+ T 

cells. (H) Immunotherapeutic relevance of fibroblast clusters. Stacked histogram showing the fibroblast 

clusters proportion in ICB-treated and ICB-untreated cohort. Fib_05_H3-3B was found to significantly 

enriched in ICB-treated samples. Chi-square test was used for statistical analysis. Nivo, Nivolumab (anti-PD-

1 monotherapy); Ipi, Ipilimumab (anti-CTLA-4 monotherapy). 
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Figure S5 Distinct characteristics of TIME subtypes.  

(A) Boxplots showing the expression of supplementary immune-related signatures in different TIME subtypes. 

Wilcoxon rank-sum test (two-sided) was applied for significance test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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IA, immune activation; II, innate immunity; ISM, immune suppressive myeloid; IE, immune exclusion. (B) 

Boxplots showing the expression of exhausted and effector signatures in different TIME subtypes. Wilcoxon 

rank-sum test (two-sided) was applied for significance test. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (C) 

Overall survival (OS) of cases stratified by BisqueRNA predicted TIME-specific cell types proportion in 

Checkmate cohort (including all samples). Log-rank test was used for statistical analysis. (D) Stacked 

histogram showing the TIME proportion in ICB-treated cohort. (E) Stacked histograms showing TIME-

specific cell types proportion across different tumor stages and pathological grades. Cell types proportion were 

predicted by BisqueRNA in TCGA-KIRC cohort. Chi-square test was used for statistical analysis. (F) Pie 

charts showing the proportion of TIME specific cell types across 52 patients. Patients with cells (≥65%) from 

sole individual TIME subtype were classified as group 1 (monotypic TIME dominance) (n = 16), while 

patients with cellular composition shared by multiple TIME subtypes were classified as group 2 (heterotypic 

TIME integration) (n = 36). (G) Stacked histograms showing group cluster proportion across different tumor 

stages in our integrated scRNA-seq datasets. Chi-square test was used for statistical analysis. 
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Figure S6-S16 Gene expression within each gene expression program in each sample. 

Heatmap showing expression of genes within each gene expression program (GEP) across single cells in each 

tumor sample. Randomly selected 5% cells for each program are shown, with top 30 signature genes showed 

on the right. cNMF analysis was performed in 43 tumor samples separately using the optimal number of NMF 

components (k-value). 
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Figure S17 Hallmark pathways enrichment of six malignant meta-programs. 

Diverging bar plots showing differences in pathway activities scored per cell by GSVA between program 

tumor cells and non-program tumor cells. t value of GSVA score was corrected for patient of origin. UV, 

ultraviolet; dn, down; v1, version 1; v2, version 2. 

 

 

Figure S18 Distributions and clinical associations of six program tumor cells. 

(A) tSNE plot showing clusters of malignant epithelial cells (left), with colored by enrichment score of each 

meta-program (right). (B) Boxplot showing the CytoTRACE score (left) and the proportion of program cells 
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for each tumor (n = 43) (right) among six MPs. (C) Boxplots showing proportion of six malignant epithelial 

cells in different ICB treatment, T stage, N stage, and M stage groups. (D) Heatmap showing the normalized 

enrichment scores for six MPs in each tumor. All samples are distinctly assigned to a specific tumor state. 
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Figure S19 Analysis of ligand-receptor interactions in tumor ecosystems using CellphoneDB. 

(A) Heatmaps of L-R interactions across four tumor ecosystems. Heatmaps display the intensity of L-R 

interactions within four distinct tumor ecosystems, labeled Ecosystem1 through Ecosystem4. The color scale 

ranges from blue (low interaction) to red (high interaction), with the counts of interactions indicated by the 

color intensity. These heatmaps highlight the heterogeneity and unique interaction profiles of each tumor 

microenvironment. (B) Dot plot of L-R interactions between EMT tumor cells and M1 macrophages in 

Ecosystem2. This dot plot details the interaction significance and expression levels of L-R pairs between EMT 

tumor cells and M1 macrophages within Ecosystem2. The dot size denotes the -log10 (p-value), reflecting the 

statistical significance of each interaction, with larger dots indicating more significant findings. The color of 

the dots varies from green to red, representing the scaled mean expression levels from low to high, respectively.  

Key interactions such as CD74-APP, CD74-MIF, and TNF-FAS are highlighted, showing their relevance in 

these ecosystems. (C) Dot plot of L-R interactions between EMT tumor cells and M2 macrophages in 

Ecosystem2. Mirroring the structure of (B), this dot plot shows L-R interactions between EMT tumor cells 

and M2 macrophages in Ecosystem2. It uses the same conventions for dot size and color coding to indicate 

statistical significance and expression levels. This panel focuses on illustrating the distinct interaction patterns 

that may influence the dynamics within the tumor microenvironment specifically involving M2 macrophages. 

Notable interactions include TNF-FAS, ICAM1-ITGAL, and CXCL12-CXCR4, which may play critical roles 

in the tumor microenvironment dynamics of these ecosystems. 
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Figure S20 Ligand-receptor interactions, distribution, and signaling pathways across tumor ecosystems. 

(A) Heatmap showing enriched L-R pairs in four specific ecosystems, colored coded by Ro/e enrichment values. 

L-R pair with Ro/e > 1 was assumed to enriched in a specific ecosystem. (B) Barplots showing the frequency 

of key chemokines/chemokine receptors pairs significantly enriched in four distinct ecosystems. (C) Stacked 

bar chart showing the proportional distribution of four tumor ecosystems in five independent cohorts (TCGA, 

E-MTAB-1980, ICGC, CheckMate, JAVELIN, and SYSUFAH). (D) GSEA plot visualizing significantly 

enriched hallmark signaling pathways of four tumor ecosystems. The normalized enrichment score (NES) and 

GSEA false discovery rate (FDR) are indicated for key pathways. Pathways with |NES| > 1 and FDR < 0.05 

were deemed significant. 
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Figure S21 GSEA ridge plot analysis of tumor ecosystem signatures across GO, KEGG, and Hallmark 

gene sets. 

(A-D) Ridge plots visualize the enrichment patterns of four tumor ecosystem signatures (Ecosystems 1-4) 
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against gene sets from GO, KEGG, and Hallmark databases using Gene Set Enrichment Analysis (GSEA). 

Each “ridge” represents the distribution of enrichment scores for a significantly enriched pathway, where the 

peak corresponds to the maximum enrichment score (ES) and the width reflects the density of genes 

contributing to the enrichment. The x-axis indicates the ES (positive/negative values denote up-/down-

regulation in the signature), and the y-axis lists enriched pathways. Color intensity represents the statistical 

significance. Pathways with |NES| > 1 and FDR < 0.05 were deemed significant. The analysis reveals distinct 

biological functions associated with each ecosystem. 

 

 

Figure S22 Spatial co-localization analysis between EMT-high tumor cells and specific immune cell 

types. 

(A-D) Representative spatial transcriptomics map showing the distribution of EMT-high tumor cells, B cells, 

CD8+ T cells, and exhausted CD8+ T cells within the tumor microenvironment. Color gradient indicates 

signature score intensity. EMT-high tumor cells exhibit spatial proximity to CD8+ T cells and exhausted CD8+ 

T cells. 
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Figure S23 NicheNet analysis and functional enrichment of the ecosystem 2 signature. 

(A) Outcome of predicted NicheNet’s ligand activity by myeloid cells on EMT related genes. Heatmap 

showing the Pearson correlation indicates the target genes prediction ability of each ligand, and better 

predictive ligands are thus ranked higher. (B-D) Metascape enrichment analysis of the signature associated 

with ecosystem 2. Significant enrichments are shown for (B) epithelial-mesenchymal transition (EMT)-related 

pathways, (C) immunosuppression-related pathways, and (D) myeloid cell-related pathways. The consistent 

enrichments across categories validate the robustness of the signature. Metascape terms with adjusted P < 

0.05. 
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Figure S24. Assessment of prognostic model performance through forest plot and 10-fold cross-

validation. 

(A) Forest plot of hazard ratios for 126 prognostic models across multiple validation cohorts. The prognostic 

performance of each model is visualized by its HR (with 95% confidence intervals) for overall survival (OS) 

in the TCGA-KIRC, EMTAB-1980, CheckMate cohorts and progression-free survival (PFS) in the TCGA, 

SYSUFAH, CheckMate, JAVELIN cohorts. Each horizontal line represents the HR and confidence interval 

for a single model within a specific cohort and endpoint. The color of each marker indicates the effect direction 

and statistical significance: red (HR > 1, P < 0.05), light red (HR > 1, P ≥ 0.05), blue (HR < 1, P < 0.05), light 

blue (HR < 1, P ≥ 0.05). The vertical line (line of no effect) is set at HR = 1. Statistical significance was 

defined as a two-sided P < 0.05. Abbreviations: HR, hazard ratio; TCGA, The Cancer Genome Atlas. (B) 

Parity plot from 10-fold cross-validation of the optimal model, comparing the actual versus predicted 

prognostic values for each fold. Markers represent individual folds, and the solid diagonal line denotes the 

ideal 1:1 relationship. The close alignment of data points to the diagonal indicates consistent model 

performance across different data subsets. (C) Coefficient of determination (R2) for each of the 10 cross-

validation folds. The average R2 value is 0.847, indicating that the model explains 84.7% of the variance and 

demonstrates robust predictive capability. 
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Figure S25 Forest plots of univariable and multivariable Cox regression analyses for the prognostic 

model across multiple cohorts. 

(A-B) The prognostic value of the risk score (RS) derived from the model and key clinical variables was 

assessed in the TCGA, E-MTAB-1980, CheckMate (OS: overall survival), CheckMate (PFS: progression-free 

survival), and JAVELIN cohorts. For each cohort, panel (A) shows the univariable analysis results, and panel 
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(B) shows the multivariable analysis results. Hazard ratios (HRs) with 95% confidence intervals (CIs) are 

displayed both graphically (squares and horizontal lines) and numerically. The vertical grey line represents 

the null effect (HR = 1). A HR > 1 indicates a worse prognosis (risk factor), while an HR < 1 indicates a better 

prognosis (protective factor). Analyses were performed using the survival package in R. The specific statistical 

methods and sample sizes for each cohort are provided in the Methods section. Abbreviations: CI, confidence 

interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.  

 

 

Figure S26 Validation and evaluation of ISM-EMTRS prognostic potentials. 

(A-E) Histograms show the comparisons between performance of ISM-EMT- RS and other clinical variables 

in predicting prognosis. 

 

 

Figure S27 Validation of the role of FKBP10, DPEP1 and DNASE1L3 in ccRCC across 6 cohorts. 
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(A-C) (Left) Cox regression analysis revealed significant associations between the expressions of FKBP10, 

DPEP1, and DNASE1L3 with clinical outcomes such as Overall Survival (OS), Disease-Free Survival (DFS), 

Disease-Specific Survival (DSS), and Progression-Free Survival (PFS) across datasets like GSE29609 (n = 

39), ICGC_EU (n = 91), GSE167573 (n = 63), E-MTAB-1980 (n = 101), GSE22541 (n = 68) and 

TCGA_KIRC (n = 533). (Middle) GSEA-Hallmark analysis identified key pathways enriched in correlation 

with these genes, including epithelial-mesenchymal transition, fatty acid metabolism and oxidative 

phosphorylation, and. (Right) Boxplots showed increase expression of FKBP10 and decreased expression of 

DNASE1L3, DPEP1 from early to advanced clinical stages or pathological grade. Significance was assessed 

using the Kruskal-Wallis test (multi-group comparisons) and Wilcoxon test (pairwise comparisons). All 

statistical tests were two-sided, P < 0.05.  
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Figure S28 Association of FKBP10, DPEP1, and DNASE1L3 expression with survival outcomes in 

immunotherapy cohorts. 

(A-C) Kaplan-Meier curves illustrate progression-free survival (PFS) and overall survival (OS) for patients 

across multiple cohorts treated with immune checkpoint inhibitors. Patients were stratified into high- and low-

expression groups based on the optimal cut-off value for each gene (FKBP10, DPEP1, DNASE1L3). The log-

rank test was used to compare survival differences between groups.  
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Figure S29 FKBP10 is an independent prognostic factor and remodels the tumor immune 

microenvironment in ccRCC. 

(A) Multivariable Cox regression forest plot demonstrating that high expression of FKBP10 is an independent 

risk factor in ccRCC patients across the TCGA-KIRC, E-MTAB-1980, CheckMate, and JAVELIN cohorts. 

Analyses were adjusted for age, gender, clinical stage, pathological stage, and PD-L1 status. (B) Subgroup 

analysis of an independent validation cohort (SYSUFAH, n = 61) receiving different immunotherapy regimens. 

FKBP10 was a significant risk factor in the Axitinib plus Toripalimab treatment group (n = 49). No significant 

association (P > 0.05) was observed in the Lenvatinib plus Pembrolizumab (n = 4) or Axitinib plus 

Pembrolizumab (n = 8) groups, likely due to limited sample size. (C) UMAP visualization of tumor-infiltrating 

immune cells (External validation in Bi, Li, and Obradovic datasets, cells = 429,854) with FKBP10-high/-low 

grouping. Bar plot (right) showed the specific cell proportion of FKBP10-high/-low groups (χ² test, P < 0.001). 

(D-E) Analysis of TIME subtypes and malignant cell states in the independent external validation cohort (n = 

62). (D) The proportion of antitumor TIME subtypes (CM1-IA and CM2-II) was significantly reduced, while 

the immunosuppressive CM3-ISM subtype was significantly increased in FKBP10-High tumors. (E) The 

proportion of tumor cells in the low-malignancy MP1-Metabolic state was decreased, whereas the EMT state 

was significantly increased in the FKBP10-High group (Chi-square test, P < 0.05 for all comparisons). (F) 
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Correlation analysis between FKBP10 expression and cytokine levels (CXCL8, TGFB, OSM). FKBP10 

expression showed the strongest positive correlation with CXCL8 among the cytokines tested.  

 

 

Figure S30 Analysis of immune cell infiltration stratified by FKBP10 expression levels in E-MTAB-1980 

and Checkmate cohorts. 

(A-E) The tumor immune microenvironment was evaluated using multiple algorithms (CIBERSORT,  

ESTIMATE, MCPcounter, EPIC, xCell) in E-MTAB-1980. Patients within the cohort were stratified into high 

and low FKBP10 expression groups. In the E-MTAB-1980 cohort, high FKBP10 expression was associated 
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with a significant decrease in T cells and an increase in macrophages (particularly M2 macrophages) and 

cancer-associated fibroblasts (CAFs). (F-J) The tumor immune microenvironment was evaluated using 

multiple algorithms in Checkmate cohort. In the Checkmate cohort, high FKBP10 expression was associated 

with a significant decrease in T cells and an increase in M2 macrophages, as well as CAFs. Data are presented 

as mean ± SD. Statistical significance was determined by the Wilcoxon rank-sum test (*P < 0.05, **P < 

0.01,***P < 0.001). 

 

 

Figure S31 Analysis of immune cell infiltration stratified by FKBP10 expression levels in TCGA-KIRC 
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and JAVELIN cohorts. 

(A-E) The tumor immune microenvironment was evaluated using multiple algorithms in TCGA-KIRC cohort. 

In the TCGA-KIRC cohort, the high FKBP10 group similarly showed reduced T cells, increased M2 

macrophages and CAFs, and a significantly elevated stromal score. (F-J) The tumor immune 

microenvironment was evaluated using multiple algorithms in JAVELIN cohort. In the JAVELIN cohort, the 

high FKBP10 group exhibited T cell reduction, increased CAFs, a significantly decreased immune score, and 

a significantly increased stromal score. Data are presented as mean ±  SD. Statistical significance was 

determined by the Wilcoxon rank-sum test (*P < 0.05, **P < 0.01,***P < 0.001).  

 

 

Figure S32 Analysis of transcription factor binding and prioritization of a key regulator at the CXCL8 

locus. 

(A) Analysis of ENCODE ChIP-seq data using MACS2 (q < 0.01) identifies 135 transcription factors (TFs). 

These TFs demonstrate coordinated occupancy at chromatin domains marked by active promoters 

(H3K4me3+/H3K27ac+) and putative enhancers (H3K4me1+) within the CXCL8 locus, spanning -2000 bp 

to +100 bp surrounding the transcription start site (TSS). (B) Venn intersection (n = 18 genes) between TCGA 

differentially expressed genes (|log2FC| > 1, FDR < 0.05) and predicted TFs. (C) Among these 18 genes, ELF3, 

ZNF331 and ATF3 demonstrate significant co-expression with CXCL8 (P < 0.001). (D) JASPAR analysis 

prioritizes ELF3 as the dominant regulator, showing both high binding potential (relative score > 0.85) and 

conserved motif at the CXCL8 promoter (right panel). 
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