International Journal of Biological Sciences

Impact factor

ISSN 1449-2288

News feeds of IJBS published articles
Manuscript login

open access Global reach, higher impact

Journal of Genomics in PubMed Central. Submit manuscript now...


International Journal of Medical Sciences

Journal of Cancer

Journal of Genomics


Journal of Bone and Joint Infection (JBJI)


Journal of Biomedicine

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2017; 13(12):1489-1496. doi:10.7150/ijbs.21637


The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products

Han-Qing Zhu, Feng-Hou Gao

Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China.


Ubiquitin-specific protease 2 (USP2) has a regulatory function in cell growth or death and is involved in the pathogenesis of various diseases. USP2 gene can generate 7 splicing variants through alternative splicing, and 5 variants respectively as USP2-201, USP2-202, USP2-204, USP2-205, USP2-206 can encode proteins. The influence of circadian rhythm, nutrition and androgen on specific signaling molecules or cytokines can regulate the alternative splicing of USP2. Specifically, PKC activator, IL-1β, TNF-α, PDGF-BB, TGF-β1 are all regulatory factors for USP2's alternative splicing. USP2-201 plays a crucial role in cell cycle progression, and is also of great significance in EGFR recycling. USP2-202 can activate apoptosis signaling pathway to participate in cell apoptosis, and USP2-204 can induce cell anti-virus reaction to decrease. In general, we collect and summarize the factors involved in the alternative splicing of USP2 in this review to further understand the mechanism behind the USP2's alternative splicing.

Keywords: USP2, alternative splicing, ubiquitin, deubiquitination, regulation.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( See for full terms and conditions.
How to cite this article:
Zhu HQ, Gao FH. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products. Int J Biol Sci 2017; 13(12):1489-1496. doi:10.7150/ijbs.21637. Available from