International Journal of Biological Sciences

Impact factor

ISSN 1449-2288

News feeds of IJBS published articles
Manuscript login
My Account

Journal of Biomedicinenew


International Journal of Medical Sciences

Journal of Cancer


Journal of Genomics

Journal of Bone and Joint Infection (JBJI)


PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2010; 6(3):268-281. doi:10.7150/ijbs.6.268


Notch and Wnt Signaling, Physiological Stimuli and Postnatal Myogenesis

Susan Tsivitse

Department of Kinesiology, Exercise Physiology Laboratory, University North Carolina - Charlotte, Charlotte, NC 28223, USA


Adult skeletal muscle stem cells, termed satellite cells are imperative to muscle regeneration. Much work has been performed on satellite cell identification and the subsequent activation of the myogenic response but the regulation of satellite cells including its activation is not well elucidated. The purpose of this review article is to synthesize what the literature reveals in regards to the current understanding of satellite cells including their contribution to muscle repair and growth following physiological stimuli. In addition, this review article will describe the recent findings on the roles of the classic developmental signaling pathways, Notch and Wnt, to the myogenic response in various muscle injury models. This purpose of this summary is to bring awareness of the impact that muscle contraction models have on the local and systemic environment of adult muscle stem cells which will be beneficial for comprehending and treatment development for muscle -associated ailments and other organ diseases.

Keywords: Notch and Wnt, muscle repair and growth, physiological stimuli

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
How to cite this article:
Tsivitse S. Notch and Wnt Signaling, Physiological Stimuli and Postnatal Myogenesis. Int J Biol Sci 2010; 6(3):268-281. doi:10.7150/ijbs.6.268. Available from