International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2010; 6(4):361-370. doi:10.7150/ijbs.6.361

Research Paper

Regulation of Vid-dependent degradation of FBPase by TCO89, a component of TOR Complex 1

Yan Yan1, 2 , Bin Kang3

1. Intercollege Program in Genetics, College of Medicine, the Pennsylvania State University, Hershey, Pennsylvania 17033, USA
2. Intercollege Program in Cell Developmental Biology, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
3. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Abstract

A pivotal gluconeogenic enzyme in Saccharomyces cerevisuae, fructose-1, 6-bisphosphatase (FBPase) was selectively turned over in vacuole via Vid (vacuole import and degradation) dependent pathway in response to the fresh glucose after chronic glucose starvation. TCO89, a novel and unique component of Tor Complex I (TORCI), was found to physically associate with FBPase and significantly affect FBPase degradation via Vid pathway. Further investigation indicated that Δtco89 mutant strongly impaired FBPase's importing into Vid vesicles and Vid24's association with Vid vesicles. Inactivation of TORCI by rapamycin treatment strongly blocked FBPase degradation. Other components of TORCI were also found to physically associate with FBPase. The P1S mutation of FBPase, reported to block its degradation, was observed to impair the association of FBPase with TORCI components. These results implicated an important regulatory role of TCO89 and TORCI in this pathway.

Keywords: FBPase, Vid, Tor Complex 1, TCO89, Protein degradation

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Yan Y, Kang B. Regulation of Vid-dependent degradation of FBPase by TCO89, a component of TOR Complex 1. Int J Biol Sci 2010; 6(4):361-370. doi:10.7150/ijbs.6.361. Available from http://www.ijbs.com/v06p0361.htm