International Journal of Biological Sciences

Impact factor

ISSN 1449-2288

News feeds of IJBS published articles
Manuscript login

open access Global reach, higher impact

Journal of Genomics in PubMed Central. Submit manuscript now...


International Journal of Medical Sciences

Journal of Cancer

Journal of Genomics


Journal of Bone and Joint Infection (JBJI)


Journal of Biomedicine

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2016; 12(2):184-197. doi:10.7150/ijbs.13710

Research Paper

Lysozyme Mutants Accumulate in Cells while Associated at their N-terminal Alpha-domain with the Endoplasmic Reticulum Chaperone GRP78/BiP

Yoshiki Kamada, Yusuke Nawata, Yasushi Sugimoto

Laboratory of Biochemistry and Bioscience, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan


Amyloidogenic human lysozyme variants deposit in cells and cause systemic amyloidosis. We recently observed that such lysozymes accumulate in the endoplasmic reticulum (ER) with the ER chaperone GRP78/BiP, accompanying the ER stress response. Here we investigated the region of lysozyme that is critical to its association with GRP78/BiP. In addition to the above-mentioned variants of lysozyme, we constructed lysozyme truncation or substitution mutants. These were co-expressed with GRP78/BiP (tagged with FLAG) in cultured human embryonic kidney cells, which were analyzed by western blotting and immunocytochemistry using anti-lysozyme and anti-FLAG antibodies. The amyloidogenic variants were confirmed to be strongly associated with GRP78/BiP as revealed by the co-immunoprecipitation assay, whereas N-terminal mutants pruned of 1-41 or 1-51 residues were found not to be associated with the chaperone. Single amino acid substitutions for the leucine array along the α-helices in the N-terminal region resulted in wild-type lysozyme remaining attached to GRP78/BiP. These mutations also tended to show lowered secretion ability. We conclude that the N-terminal α-helices region of the lysozyme is pivotal for its strong adhesion to GRP78/BiP. We suspect that wild-type lysozyme interacts with the GRP at this region as a step in the proper folding monitored by the ER chaperone.

Keywords: lysozyme, variants, aggregate, amyloidosis, GRP78/BiP, endoplasmic reticulum stress

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
How to cite this article:
Kamada Y, Nawata Y, Sugimoto Y. Lysozyme Mutants Accumulate in Cells while Associated at their N-terminal Alpha-domain with the Endoplasmic Reticulum Chaperone GRP78/BiP. Int J Biol Sci 2016; 12(2):184-197. doi:10.7150/ijbs.13710. Available from