Int J Biol Sci 2005; 1(2):67-79. doi:10.7150/ijbs.1.67 This issue Cite
Review
Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada, N6A 5C1
Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2α or CK2α' subunits and two regulatory CK2β subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2β subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2β in the absence of catalytic CK2 subunits reinforces the notion that CK2β has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2β can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2β and these protein kinases with special emphasis on the properties of CK2β that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2β.
Keywords: Protein kinase CK2, CK2β, protein kinase, CK2-independent interactions, cyclin