Int J Biol Sci 2011; 7(6):740-752. doi:10.7150/ijbs.7.740 This issue Cite

Research Paper

Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells

Tan Li1, Pu Huang1, Jing Liang1, Wenyu Fu1, Zonglou Guo2✉, Lihong Xu1✉

1. Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
2. Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Citation:
Li T, Huang P, Liang J, Fu W, Guo Z, Xu L. Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells. Int J Biol Sci 2011; 7(6):740-752. doi:10.7150/ijbs.7.740. https://www.ijbs.com/v07p0740.htm
Other styles

File import instruction

Abstract

Protein phosphatase 2A (PP2A) is a major protein phosphatase with important cell functions. Known and utilized as a potent inhibitor of PP2A, microcystin-LR (MCLR) targets PP2A as a core element that affects numerous cellular mechanisms. But apart from direct inhibition, the exact effect of MCLR on PP2A in cell is largely unknown, specifically with regard to cellular response and autoregulation. Here, we show that a low concentration of MCLR stimulates, rather than inhibits, PP2A activity in HEK293 cells. Immunoprecipitation and immunofluorescence assays reveal that the catalytic subunit and a regulatory subunit of PP2A, termed α4, dissociate from inactive complex upon MCLR exposure, suggesting that the released catalytic subunit regains activity and thereby compensates the activity loss. At high concentrations of MCLR, PP2A activity decreases along with dissociation of the core enzyme and altered post-translational modification of its catalytic subunit. In addition, the dissociation of α4 and PP2A may contribute to destabilization of HEK293 cells cytoskeleton architecture, detachment to extracellular matrix and further anoikis. Our data provide a novel PP2A upregulation mechanism and challenge the recognition of MCLR only as a PP2A inhibitor in cells.

Keywords: microcystin-LR, protein phosphatse 2A, α4, anoikis


Citation styles

APA
Li, T., Huang, P., Liang, J., Fu, W., Guo, Z., Xu, L. (2011). Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells. International Journal of Biological Sciences, 7(6), 740-752. https://doi.org/10.7150/ijbs.7.740.

ACS
Li, T.; Huang, P.; Liang, J.; Fu, W.; Guo, Z.; Xu, L. Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells. Int. J. Biol. Sci. 2011, 7 (6), 740-752. DOI: 10.7150/ijbs.7.740.

NLM
Li T, Huang P, Liang J, Fu W, Guo Z, Xu L. Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells. Int J Biol Sci 2011; 7(6):740-752. doi:10.7150/ijbs.7.740. https://www.ijbs.com/v07p0740.htm

CSE
Li T, Huang P, Liang J, Fu W, Guo Z, Xu L. 2011. Microcystin-LR (MCLR) Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells. Int J Biol Sci. 7(6):740-752.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image