Int J Biol Sci 2014; 10(4):404-414. doi:10.7150/ijbs.7723

Research Paper

Andrographolide Suppress Tumor Growth by Inhibiting TLR4/NF-κB Signaling Activation in Insulinoma

Qian-Qian Zhang1*, Yi Ding1*, Yan Lei1, Cui-Ling Qi1, Xiao-Dong He1, Tian Lan1, Jiang-Chao Li1, Ping Gong1, Xuesong Yang3, Jian-Guo Geng2✉, Li-Jing Wang1✉

1. Vascular Biology Research Institute, Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
2. Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
3. Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College of Jinan University, Guangzhou 510632, China.
* These authors contributed equally to this work.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Zhang QQ, Ding Y, Lei Y, Qi CL, He XD, Lan T, Li JC, Gong P, Yang X, Geng JG, Wang LJ. Andrographolide Suppress Tumor Growth by Inhibiting TLR4/NF-κB Signaling Activation in Insulinoma. Int J Biol Sci 2014; 10(4):404-414. doi:10.7150/ijbs.7723. Available from

File import instruction


Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma.

Keywords: Andrographolide, insulinoma, growth.