Int J Biol Sci 2005; 1(3):123-125. doi:10.7150/ijbs.1.123

Short Research Communication

A new way of describing meiosis that uses fractal dimension to predict metaphase I

Cynthia M. Ross

Department of Biological Sciences, Thompson Rivers University, Kamloops, BC V2C 5N3, Canada

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Ross CM. A new way of describing meiosis that uses fractal dimension to predict metaphase I. Int J Biol Sci 2005; 1(3):123-125. doi:10.7150/ijbs.1.123. Available from

File import instruction


Meiosis, the reductive nuclear division, is a continuum, but for purposes of communication, is described in stages. In sexually-reproducing organisms, including the dwarf mistletoe Arceuthobium americanum, prophase I of meiosis is prolonged (8 months for female A. americanum). Conversely, metaphase I, where chromosome pairs line up along a dividing cell's "equator", is relatively brief, difficult to predict, but critical regarding the random distribution of the paternal and maternal chromosomes in sexual organisms. However, descriptions of meiosis as either a continuum or stages are limited to qualitative observations. A quantification of meiosis can provide mathematical descriptors and allow for the prediction of when chromosomes reach the equator; this will not only be useful to researchers of cell division, but also to those requiring a large sample of metaphase I materials. Here, the probability-density function was used to calculate the fractal dimension of A. americanum nuclei undergoing early meiosis, and it predicted the onset of metaphase I by 2 days.

Keywords: chromosomal condensation, dwarf mistletoe, fractal, meiosis, probability-density function, quantification