Int J Biol Sci 2006; 2(1):17-22. doi:10.7150/ijbs.2.17 This issue

Research Paper

The effects of sympathectomy and dexamethasone in rats ingesting sucrose

Margarita Franco-Colín, Iván Villanueva, Manuel Piñón, Radu Racotta

Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), México Distrito Federal, Mexico.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Franco-Colín M, Villanueva I, Piñón M, Racotta R. The effects of sympathectomy and dexamethasone in rats ingesting sucrose. Int J Biol Sci 2006; 2(1):17-22. doi:10.7150/ijbs.2.17. Available from

File import instruction


Both high-sucrose diet and dexamethasone (D) treatment increase plasma insulin and glucose levels and induce insulin resistance. We showed in a previous work (Franco-Colin, et al. Metabolism 2000; 49:1289-1294) that combining both protocols for 7 weeks induced less body weight gain in treated rats without affecting mean daily food intake. Since such an effect may be explained by an increase in caloric expenditure, possibly due to activation of the sympathetic nervous system by sucrose ingestion, in this work, and using 10% sucrose in the drinking water, male Wistar rats were divided into 4 groups. Two groups were sympathectomized using guanethidine (Gu) treatment for 3 weeks. One of these groups of rats received D in the drinking water. Of the 2 groups not receiving Gu, one was the control (C) and the other received D. After 8 weeks a glucose tolerance test was done. The rats were sacrificed and liver triglyceride (TG), perifemoral muscle lipid, and norepinephrine (NE) levels in the liver spleen, pancreas, and heart were determined. Gu-treated rats (Gu and Gu+D groups) showed less than 10% NE concentration compared to C and D rats, less daily caloric intake and body-weight gain, more sucrose intake, and better glucose tolerance. The area under the curve after glucose administration correlated significantly with the mean body weight gain of the rats, except for D group. Groups D (D and Gu+D) also showed less caloric intake and body-weight gain but higher liver weight and TG concentration and lower peripheral muscle mass. The combination of Gu+D treatments showed some peculiar results: negative body weight gain, a fatty liver, and low muscle mass. Though the glucose tolerance test had the worst results for the D group, it showed the best results in the Gu+D group. There were significant interactions for Guan X Dex by two-way ANOVA test for the area under the curve in the glucose tolerance test, muscle mass, and muscle lipids. The results suggest that dexamethasone catabolic effect is not caused by sympathetic activation.

Keywords: Guanethidine sympathectomy, dexamethasone, high-sucrose diet.